Purpose: To study alginate- and hyaluronic acid-based hydrogels in vitro as vitreous substitutes.
Methods: Biopolymeric hydrogels based on high-molecular alginate (0.5% and 1.0%) and hyaluronic acid (1.0% and Healaflow) were compared with extracted human vitreous bodies and silicone oil (SIL-5000) regarding their optical properties (refractive index, transmission) and viscoelastic characteristics (storage modulus G', loss modulus G″). The cytotoxic (metabolic activity, apoptosis) and antiproliferative profiles were determined using cultured human fibroblasts, ARPE-19, and photoreceptor cells. The hydrogel systems were applied to human fetal retinal pigment epithelial cells cultured for two months until maximum transepithelial electrical resistance (TEER) to investigate the effect of the gel matrices on tight junctions using TEER measurements and immunostainings against the tight junction protein ZO-1.
Results: Tested alginate- and hyaluronic acid-based hydrogels resembled the natural refractive index of human vitreous bodies (1.3356-1.3360) in contrast to SIL-5000 (1.4034) and showed high optical transparency (>90%) within the visible light region. The biopolymeric hydrogels exhibited viscoelastic properties similar to juvenile vitreous bodies with G'>G″ adjustable via different gelation times, contrary to SIL-5000 (G'
Conclusions: The present in vitro study demonstrates good optical, viscoelastic, and biocompatible properties of alginate- and hyaluronic acid-based hydrogels required for their use as vitreous substitutes.
Translational Relevance: Biopolymer-based hydrogels represent a promising vitreous replacement strategy to treat vitreoretinal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757634 | PMC |
http://dx.doi.org/10.1167/tvst.9.13.34 | DOI Listing |
J Liposome Res
January 2025
SiteDel Group, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway.
In this study, liposomes consisting of soybean phosphatidyl choline (SoyPC) and different molar concentrations (10 mol% and 20 mol%) of dioleoyl trimethylammoniumpropane (DOTAP) were prepared by the thin film hydration method and coated with sodium hyaluronate (NaHA) of different MWs (8-15 kDa, 30-50 kDa and 90-130 kDa) and concentrations (0.01-0.2% w/w) using phosphate buffer (PB) or glycerol phosphate buffer (G-PB) as the hydration medium.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Himachal Pradesh University, Shimla 171005, India. Electronic address:
Introduction: The rapid progress in polymer science has designed innovative materials for biomedical applications. In the case of drug design, for each new therapeutic agent, a drug delivery system (DDS) is required to improve its pharmacokinetic and pharmacodynamic parameters. Therefore, significant research has been carried out to develop drug delivery (DD) carriers for these new therapeutic agents.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Materials Engineering, Indian Institute of Science Bangalore, Karnataka 560012, India.
The cartilage possesses limited regenerative capacity, necessitating advanced approaches for its repair. This study introduces a bioink designed for cartilage tissue engineering (TE) by incorporating ionically cross-linkable alginate into the photo-cross-linkable MuMA bioink, resulting in a double cross-linked interpenetrating network (IPN) hydrogel. Additionally, hyaluronic acid (HA), a natural component of cartilage and synovial fluid, was added to enhance the scaffold's properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmacy, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, PR China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, PR China. Electronic address:
Hypertrophic scar (HS) is a disease with excessive skin fibrosis and collagen disorder, which is generally caused by abnormal wound repair process after burn and trauma. Although intralesional injection of 5-fluorouracil (5-Fu) has been used in clinical treatment of HS, the patients' compliance of injection treatment is poor. In this study, a double-layer dissolution microneedle (MN) containing asiaticoside (AS) and 5-Fu was designed for the treatment of HS.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China. Electronic address:
Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!