Despite effective antiretroviral therapy (ART), mild forms of HIV-associated neurocognitive disorders (HAND) continue to afflict approximately half of all people living with HIV (PLWH). As PLWH age, HIV-associated inflammation perturbs the balance between brain matrix metalloproteinases (MMPs) and their tissue inhibitors of metalloproteinases (TIMPs), likely contributing to neuropathogenesis. The MMP/TIMP balance is associated with cognition, learning, and memory, with TIMPs eliciting neuroprotective effects. Dysregulation of the MMP/TIMP balance was evident in the brains of PLWH where levels of TIMP-1, the inducible family member, were significantly lower than non-infected controls, and MMPs were elevated. Here, we evaluated the MMP/TIMP levels in the doxycycline (DOX)-induced glial fibrillary acidic protein promoter-driven HIV-1 transactivator of transcription (Tat) transgenic mouse model. The HIV-1 protein Tat is constitutively expressed by most infected cells, even during ART suppression of viral replication. Many studies have demonstrated indirect and direct mechanisms of short-term Tat-associated neurodegeneration, including gliosis, blood-brain barrier disruption, elevated inflammatory mediators and neurotoxicity. However, the effects of acute vs. prolonged exposure on Tat-induced dysregulation remain to be seen. This is especially relevant for TIMP-1 as expression was previously shown to be differentially regulated in human astrocytes during acute vs. chronic inflammation. In this context, acute Tat expression was induced with DOX intraperitoneal injections over 3 weeks, while DOX-containing diet was used to achieve long-term Tat expression over 6 months. First, a series of behavior tests evaluating arousal, ambulation, anxiety, and cognition was performed to examine impairments analogous to those observed in HAND. Next, gene expression of components of the MMP/TIMP axis and known HAND-relevant inflammatory mediators were assessed. Altered anxiety-like, motor and/or cognitive behaviors were observed in Tat-induced (iTat) mice. Gene expression of MMPs and TIMPs was altered depending on the duration of Tat expression, which was independent of the HIV-associated neuroinflammation typically implicated in MMP/TIMP regulation. Collectively, we infer that HIV-1 Tat-mediated dysregulation of MMP/TIMP axis and behavioral changes are dependent on duration of exposure. Further, prolonged Tat expression demonstrates a phenotype comparable to asymptomatic to mild HAND manifestation in patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7769877PMC
http://dx.doi.org/10.3389/fneur.2020.593188DOI Listing

Publication Analysis

Top Keywords

tat expression
16
mmp/timp balance
12
dysregulation mmp/timp
8
inflammatory mediators
8
gene expression
8
mmp/timp axis
8
tat
7
mmp/timp
7
expression
7
astrocyte hiv-1
4

Similar Publications

Superoxide dismutase (SOD) plays important roles in the balance of oxidation and antioxidation in body mostly by scavenging superoxide anion free radicals (O). Previously, we reported a novel Cu/Zn SOD from jellyfish Cyanea capillata, named CcSOD1, which exhibited excellent SOD activity and high stability. TAT peptide is a common type of cell penetrating peptides (CPPs) that efficiently deliver extracellular biomacromolecules into cytoplasm.

View Article and Find Full Text PDF

PF1163A () is a fungal metabolite that inhibits sterol-C4-methyl oxidase. In this study, we identified the biosynthetic gene cluster of and elucidated its biosynthetic pathway through heterologous expression experiments. Polyketide synthase-nonribosomal synthetase hybrid PfaA, which is responsible for the biosynthesis of PF1163A, harbors an unusual domain organization with tandem condensation (C) domains and a terminal condensation domain.

View Article and Find Full Text PDF

Methamphetamine and HIV-1 Tat Protein Synergistically Induce Endoplasmic Reticulum Stress to Promote TRIM13-Mediated Neuronal Autophagy.

Mol Neurobiol

December 2024

NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue Chenggong District, Kunming, 650500, China.

Co-exposure to methamphetamine (METH) abuse and HIV infection exacerbates central nervous system damage. However, the underlying mechanisms of this process remain poorly understood. This study aims to explore the roles of neuronal autophagy in the synergistic damage to the central nervous system caused by METH and HIV proteins.

View Article and Find Full Text PDF

HO-1 represses NF-κB signaling pathway to mediate microglia polarization and phagocytosis in intracerebral hemorrhage.

Neuroscience

December 2024

Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China. Electronic address:

Background: Microglia polarization plays a crucial role in inflammatory injury of brain following intracerebral hemorrhage (ICH). Heme oxygenase-1 (HO-1) has demonstrated protective properties against inflammation and promote hematoma clearance after ICH. The objective of this study was to explore impacts of HO-1 on microglia polarization and phagocytosis after ICH, along with the underlying mechanism.

View Article and Find Full Text PDF

Co-delivery of retinoic acid and miRNA by functional Au nanoparticles for improved survival and CT imaging tracking of MSCs in pulmonary fibrosis therapy.

Asian J Pharm Sci

August 2024

Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China.

Mesenchymal stem cells (MSCs) have emerged as promising candidates for idiopathic pulmonary fibrosis (IPF) therapy. Increasing the MSC survival rate and deepening the understanding of the behavior of transplanted MSCs are of great significance for improving the efficacy of MSC-based IPF treatment. Therefore, dual-functional Au-based nanoparticles (Au@PEG@PEI@TAT NPs, AuPPT) were fabricated by sequential modification of cationic polymer polyetherimide (PEI), polyethylene glycol (PEG), and transactivator of transcription (TAT) penetration peptide on AuNPs, to co-deliver retinoic acid (RA) and microRNA (miRNA) for simultaneously enhancing MSC survive and real-time imaging tracking of MSCs during IPF treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!