Acyl-CoA:cholesterol acyltransferase (ACAT) mediates cellular cholesterol esterification. In atherosclerotic plaque macrophages, ACAT promotes cholesteryl ester accumulation, resulting in foam cell formation and atherosclerosis progression. Its complete inactivation in mice, however, showed toxic effects because of an excess of free cholesterol (FC) in macrophages, which can cause endoplasmic reticulum stress, cholesterol crystal formation, and inflammasome activation. Our previous studies showed that long-term partial ACAT inhibition, achieved by dietary supplementation with Fujirebio F1394, delays atherosclerosis progression in apoprotein E-deficient ( ) mice by reducing plaque foam cell formation without inflammatory or toxic effects. Here, we determined whether short-term partial inhibition of ACAT, in combination with an enhanced systemic FC acceptor capacity, has synergistic benefits. Thus, we crossbred with human apoprotein A1-transgenic ( ) mice, which have elevated cholesterol-effluxing high-density lipoprotein particles, and subjected and / mice to an atherogenic diet to develop advanced plaques. Then mice were either euthanized (baseline) or fed purified standard diet with or without F1394 for 4 more weeks. Plaques of / mice fed F1394 showed a 60% reduction of macrophages accompanied by multiple other benefits, such as reduced inflammation and favorable changes in extracellular composition, in comparison with baseline mice. In addition, there was no accumulation of cholesterol crystals or signs of toxicity. Overall, these results show that short-term partial ACAT inhibition, coupled to increased cholesterol efflux capacity, favorably remodels atherosclerosis lesions, supporting the potential of these combined therapies in the treatment of advanced atherosclerosis. SIGNIFICANCE STATEMENT: Short-term pharmacological inhibition of acyl-CoA:cholesterol acyltransferase-mediated cholesterol esterification, in combination with increased free cholesterol efflux acceptors, has positive effects in mice by 1) reducing the inflammatory state of the plaque macrophages and 2) favoring compositional changes associated with plaque stabilization. These effects occur without toxicity, showing the potential of these combined therapies in the treatment of advanced atherosclerosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7883010 | PMC |
http://dx.doi.org/10.1124/molpharm.120.000108 | DOI Listing |
Mol Cancer
January 2025
Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
Background: Sorafenib, an FDA-approved drug for advanced hepatocellular carcinoma (HCC), faces resistance issues, partly due to myeloid-derived suppressor cells (MDSCs) that enhance immunosuppression in the tumor microenvironment (TME).
Methods: Various murine HCC cell lines and MDSCs were used in a series of in vitro and in vivo experiments. These included subcutaneous tumor models, cell viability assays, flow cytometry, immunohistochemistry, and RNA sequencing.
Cell Commun Signal
January 2025
Department of Cardiology, the 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
Oxidative stress-associated proximal tubular cells (PTCs) damage is an important pathogenesis of hypertensive renal injury. We previously reported the protective effect of VEGFR3 in salt-sensitive hypertension. However, the specific mechanism underlying the role of VEGFR3 in kidney during the overactivation of the renin-angiotensin-aldosterone system remains unclear.
View Article and Find Full Text PDFVirol J
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!