AI Article Synopsis

  • This study examined how different amounts of citric acid affect the durability and mechanical properties of rubberwood particleboard.
  • Particleboards were made with varying citric acid contents (10, 15, and 20 wt%) and compared to a control made with urea formaldehyde (UF) resin.
  • While citric acid-bonded boards had lower physical and mechanical properties than UF-bonded boards, they showed better resistance to fungal and termite damage, suggesting citric acid could be an eco-friendly alternative in particleboard production, though further improvements are needed.

Article Abstract

This study investigated the effects of different citric acid content on the physico-mechanical and biological durability of rubberwood particleboard. Particleboards with density of 700 kg/m were produced with three different citric acid contents, namely 10, 15 and 20 wt%. Particleboards made from 10 wt% urea formaldehyde (UF) resin were served as control for comparison purposes. FTIR analysis was carried out and the formation of ester linkages between -OH on cellulose and carbonyl groups of citric acid was confirmed. The peak intensity increased along with increasing citric content, which indicated that a higher amount of ester linkages were formed at higher citric acid content. Citric acid-bonded particleboard had inferior physical properties (water absorption and thickness swelling) and mechanical properties (internal bonding strength, modulus of rupture and modulus of elasticity) compared to that of the UF-bonded particleboard. However, the performance of particleboard was enhanced with increasing citric acid content. Meanwhile, citric acid-bonded particleboard displayed significantly better fungal and termite resistance than UF-bonded particleboard owing to the acidic nature of citric acid. It can be concluded that citric acid is a suitable green binder for particleboard but some improvement is needed during the particleboard production process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795821PMC
http://dx.doi.org/10.3390/polym13010098DOI Listing

Publication Analysis

Top Keywords

citric acid
28
citric acid-bonded
12
acid content
12
citric
11
particleboard
9
physico-mechanical biological
8
biological durability
8
rubberwood particleboard
8
ester linkages
8
increasing citric
8

Similar Publications

Improved toughening attributes of coix seed oil high internal phase Pickering emulsion gel via the carrageenan and super-deamidated wheat gluten microparticles interfacial network fotified by the acid-heat induction strategy.

Int J Biol Macromol

January 2025

Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China; Department of Food Science, Foshan University, Foshan, Guangdong 528000, China. Electronic address:

The toughening coix seed oil (CSO) high internal phase Pickering emulsion (CSO-HIPES) and gel (CSO-HIPESG) comprised of carrageenan (CR)/super-deamidated-gluten (SDG) micro-particles (CR/SDG) were investigated via acid-heat induction. Results showed polysaccharide natural deep eutectic solvent (P-NADES) by citric acid-glucose-carrageenan ((CGCR), molar ratio at 1:1:0.035) was the crucial for the preparation of SDG (deamidation degree, 99.

View Article and Find Full Text PDF

Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Mol Oncol

January 2025

Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).

View Article and Find Full Text PDF

Organic foliar spraying: A method that synchronously reduces mercury methylation in soil and accumulation in vegetable.

Environ Pollut

December 2024

College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Faculty of Architecture and Engineering, Guizhou Polytechnic of Construction, Guiyang, 551400, China.

Although the use of foliar spraying with organic matter has been extensively studied and applied to reduce heavy metals in plants, research on its application for reducing mercury (Hg) accumulation in plants, particularly the more toxic methylmercury (MeHg), remains scarce. Furthermore, previous researches on the barrier mechanisms of foliar spraying primarily concentrated on the effects of spraying agents on plant physiological and biochemical indicators, with limited focus on their impacts on soil environment. Herein, the dynamic effects and mechanisms of organic foliar spraying materials, including earthworm liquid fertilizer (ELF), Tween 80 (T80), and citric acid (CA), on soil Hg methylation and accumulation in lettuce were investigated using pot experiment.

View Article and Find Full Text PDF

Visible light-driven copper vanadate/biochar nanocomposite for heterogeneous photocatalysis degradation of tetracycline: Performance, mechanism, and application of machine learning.

Environ Res

December 2024

Guangxi Colleges and Universities Key Laboratory of Environmental-friendly Materials and Ecological Remediation, Guangxi Key Laboratory of Advanced Structural Materials and Carbon Neutralization, School of Materials and Environment, Guangxi Minzu University, Nanning, 530006, China. Electronic address:

Water pollution caused by antibiotics is considered a major and growing issue. To address this challenge, high-performance copper vanadate-based biochar (CuVO/BC) nanocomposite photocatalysts were prepared to develop an efficient visible light-driven photocatalytic system for the remediation of tetracycline (TC) contaminated water. The effects of photocatalyst mass, solution pH, pollutant concentration, and common anions on the TC degradation were investigated in detail.

View Article and Find Full Text PDF

Microbial Biotic Associations Dominated Adaptability Differences of Dioecious Poplar Under Salt Stress.

Plant Cell Environ

January 2025

Key Laboratory of the State Forestry and Grassland Administration for the Cultivation of Forests in the Lower Reaches of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an, China.

How different stress responses by male and female plants are influenced by interactions with rhizosphere microbes remains unclear. In this study, we employed poplar as a dioecious model plant and quantified biotic associations between microorganisms to explore the relationship between microbial associations and plant adaptation. We propose a health index (HI) to comprehensively characterize the physiological characteristics and adaptive capacity of plants under stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!