Polycystic ovary syndrome (PCOS) is a common endocrinopathy that is associated with an adverse metabolic profile including reduced postprandial thermogenesis. Although abnormalities in adipose tissue function have been widely reported in women with PCOS, less is known about direct effects of androgen on white and, particularly, brown adipocytes. The purpose of this study was to investigate the effect of the nonaromatizable androgen dihydrotestosterone (DHT) on (1) lipid accumulation and expression of adipogenic markers in immortalized mouse brown adipose cell lines (IMBATs), (2) mitochondrial respiration in IMBATs, (3) mitochondrial DNA content and gene expression, (4) expression of brown adipose tissue (BAT) markers and thermogenic activation. In addition, we profiled the relative levels of 38 adipokines secreted from BAT explants and looked at androgen effects on adipokine gene expression in both IMBATs and immortalized mouse white adipose (IMWATs) cell lines. Androgen treatment inhibited IMBAT differentiation in a dose-dependent manner, reduced markers of adipogenesis, and attenuated the β-adrenoceptor-stimulated increase in uncoupling protein-1 (UCP1) expression. In explants of mouse interscapular BAT, androgen reduced expression of UCP1, peroxisome proliferator-activated receptor-γ coactivator-1 (PCG-1) and Cidea. Significantly, as well as affecting genes involved in thermogenesis in BAT, androgen treatment reduced mitochondrial respiration in IMBATs, as measured by the Seahorse XF method. The results of this study suggest a role for excess androgen in inhibiting brown adipogenesis, attenuating the activation of thermogenesis and reducing mitochondrial respiration in BAT. Together, these data provide a plausible molecular mechanism that may contribute to reduced postprandial thermogenesis and the tendency to obesity in women with PCOS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796281 | PMC |
http://dx.doi.org/10.3390/ijms22010243 | DOI Listing |
J Inflamm Res
January 2025
Department of Infectious Disease, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People's Republic of China.
Chronic liver disease ranks as the 11th leading cause of death worldwide, while hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality, representing a substantial risk to public health. Over the past few decades, the global landscape of chronic liver diseases, including hepatitis, metabolic dysfunction-associated steatotic liver disease (MASLD), liver fibrosis, and HCC, has undergone substantial changes. Copper, a vital trace element for human health, is predominantly regulated by the liver.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Department of Physiology, School of Medicine, University College Cork, Western Road, Cork, Ireland.
Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.
View Article and Find Full Text PDFJ Exp Bot
January 2025
National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
The transport of metabolites across the inner mitochondrial membrane (IMM) is crucial for maintaining energy balance and efficient distribution of metabolic intermediates between cellular compartments. Under abiotic stress, mitochondrial function becomes particularly critical, activating complex signaling pathways essential for plant stress responses. These pathways modulate stress-responsive gene expression, influencing key physiological processes such as cell respiration and senescence, helping plants adapt to stress.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Laboratory of Biological Oxidations, Department of Biochemistry, State University of Maringa, Maringa 87020-900, PR, Brazil.
The cover crop (L.) R.Br.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!