A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantification of triiodothyronine and thyroxine in rat serum using liquid chromatography tandem mass spectrometry. | LitMetric

Quantification of triiodothyronine and thyroxine in rat serum using liquid chromatography tandem mass spectrometry.

J Pharm Biomed Anal

Bioanalytical and Pharmacokinetic Study Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea. Electronic address:

Published: February 2021

Thyroid hormones act on almost every tissue in the body to promote catabolism in cells and are important for regulating many biological processes. Accurate quantification of endogenous thyroid hormones has become essential for clinical and non-clinical applications in the development of new drugs according to the OECD Guideline (2018). However, there are difficulties in quantitative analysis of thyroid hormones because no analyte-free biological matrices are available for analysis of endogenous substances. In this study, surrogate matrix and surrogate analyte methods were compared and validated to quantify endogenous triiodothyronine (T) and thyroxine (T) in rat serum using LC-MS/MS. Separation of analytes was performed using an Xbridge™ C18 (2.1 × 50 mm, 2.5 μm) column. In the surrogate matrix, 3,3'5-triiodo- l-thyronine-C (cT) and l-thyroxine-C (cT) were used as the internal standard (IS), and in the surrogate analyte, l-3,3'-diiodothyronine-C (cT) was used as the IS. The mobile phases consisted of 0.1 % acetic acid in purified water (A) and 0.1 % acetic acid in acetonitrile (B). Both analytical methods were suitable for selectivity, matrix effect, carryover, lower limit of quantification, linearity, accuracy, precision, recovery, stability and parallelism. The surrogate matrix method was more accurate than using the surrogate analyte method, including evaluation of parallelism at low concentrations. Additionally, the surrogate matrix is cost-effective for T and T analysis in biological samples because it consists only of deionized water. However, surrogate analytes difficult to evaluate parallelism by obtaining response factors for mass spectrometric signal differences between the actual and surrogate analytes. Therefore, the results of this study indicate that it is more cost-effective to use the surrogate matrix method for endogenous thyroid hormone, T and T, analysis in biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2020.113840DOI Listing

Publication Analysis

Top Keywords

surrogate matrix
20
thyroid hormones
12
surrogate analyte
12
surrogate
10
triiodothyronine thyroxine
8
thyroxine rat
8
rat serum
8
endogenous thyroid
8
acetic acid
8
matrix method
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!