A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recent advances in inter-cellular interactions during neural circuit assembly. | LitMetric

Recent advances in inter-cellular interactions during neural circuit assembly.

Curr Opin Neurobiol

Department of Translational Neuroscience, University Medical Center (UMC) Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands. Electronic address:

Published: August 2021

Neural circuit assembly is regulated by inter-cellular interactions involving secreted and surface-tethered guidance molecules. Here, we review recent progress in our understanding of their mechanisms-of-action and biological effects. We discuss mechanisms through which the secreted cue Netrin-1 regulates neuron migration and highlight novel roles for axon-derived secreted guidance cues. We cover recent structural work at atomic resolution that provides new insights into the activation mechanisms of axon guidance receptors and into protein complexes containing cell adhesion molecules, such as Teneurin (Ten), Latrophilin (Lphn) and FLRT. Ten-Ten homophilic, Ten-Lphn heterophilic, and Ten-Lphn-FLRT tripartite complexes seem to elicit distinct context-dependent cellular responses. Seemingly opposite responses can also be triggered by the Eph/ephrin signaling system. Here, recent work provides a simple mechanism for the decision of forming a new synapse versus rejection of the pre-synaptic partner. These studies identify novel regulatory mechanisms and biological functions that will apply generally in developing neural systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.conb.2020.12.004DOI Listing

Publication Analysis

Top Keywords

inter-cellular interactions
8
neural circuit
8
circuit assembly
8
advances inter-cellular
4
interactions neural
4
assembly neural
4
assembly regulated
4
regulated inter-cellular
4
interactions involving
4
involving secreted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!