This paper reports on the influence of Pd ions on the ultraviolet emission from Gd, investigated in barium phosphate glass as model matrix. The glasses were prepared by the melting technique and characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, optical absorption, and photoluminescence (PL) spectroscopy including decay kinetics assessment. The XRD data confirmed the amorphous nature of the glasses, whereas FT-IR spectra indicated the basic structural features of PO tetrahedra. The optical absorption analysis showed that addition of PdO up to 0.3 mol% lead to significant growth of the visible Pd d-d absorption band around 415 nm, with ultimately some decrease in the optical band gap energies assessed through Tauc plots. Further, significant PL quenching of Gd ions emission around 312 nm was observed with increasing PdO contents, alongside increased decay rates for the P emitting state in Gd. An analysis of quenching constants was ultimately performed comparing results from emission intensity with the decay rates. It is suggested that a Gd → Pd excitation transfer and/or absorption competition lead the quenching process with a contribution from a channel depopulating the P metastable state.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.119357 | DOI Listing |
F1000Res
January 2025
Department of Orthopaedics, Leiden University Medical Center, Leiden, Albinusdreef 2, 2333 ZA, The Netherlands.
Background: Prosthetic joint infection is a serious complication that can arise after total joint replacement surgery. When bacteria colonise an orthopaedic implant, they form biofilms that protect them from their environment, making them difficult to remove. Treatment is further complicated by a global rise of antimicrobial resistance.
View Article and Find Full Text PDFBiotechnol J
January 2025
Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China.
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration.
View Article and Find Full Text PDFSci Rep
January 2025
Advanced Glass and Glass Ceramic Research Laboratory, Department of Physics, University of Lucknow, Lucknow, 226007, India.
Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University Olomouc, 779 00 Olomouc, Czech Republic.
The use of scaffolds for osteochondral tissue regeneration requires an appropriate selection of materials and manufacturing techniques that provide the basis for supporting both cartilage and bone tissue formation. As scaffolds are designed to replicate a part of the replaced tissue and ensure cell growth and differentiation, implantable materials have to meet various biological requirements, e.g.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Lukasiewicz Research Network-Institute of Aviation, 110/114 Krakowska Avenue, 02-256 Warsaw, Poland.
Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!