Dopamine participates in many physiological and pathological processes. Dynamic monitoring of dopamine levels in the cytoplasm of a single living cell reflects not only the functional state of dopamine synthesis factors but also the processes of related neurodegenerative diseases. Due to the low content of cytoplasmic dopamine and the difficulty to keep cells alive during the operating process, the detection of cytoplasmic dopamine is still challenging. Herein, a solid-phase microextraction (SPME) technique integrated nanobiosensor was employed to trace and quantify dopamine concentration fluctuations in the cytoplasm of a single living cell. We designed a polypyrrole modified carbon fiber nanoprobe as a bifunctional nanoprobe that can extract cytoplasmic dopamine and then perform electrochemical detection. This bifunctional nanoprobe can detect 10 pmol/L extracted dopamine and detected a 60% decrease of the cytoplasmic dopamine concentration in a single living cell by K stimulation. This study allowed for the first time serially detecting cytoplasmic dopamine while keeping the target cell alive, which might yield a new method for research on dopamine neurotoxicity and the related drug action mechanisms for neurodegenerative disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2020.112915 | DOI Listing |
Sci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFPLoS One
December 2024
Therapeutic Development Branch, Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institute of Health, Rockville, Maryland, United States of America.
R-VK4-116 is currently being developed as a medication to treat opioid use disorder (OUD). To characterize in vitro safety properties of R-VK4-116, metabolic stability in hepatocytes or liver microsomes, metabolite identification, metabolism/transporter-mediated drug interactions, lysosomal perturbation, mitochondrial toxicity, off-target enzyme effects, cellular and nuclear receptor functional assays, electrophysiological assays, CiPA, KINOMEscanTM, plasma protein binding, phospholipidosis and steatosis assays were performed. Overall, R-VK4-116 was metabolically stable in hepatocytes and microsomes.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan. Electronic address:
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier.
View Article and Find Full Text PDFJ Physiol Investig
November 2024
Department of Neurology, The Affiliated Hospital of Yunnan University, Kunming, China.
Parkinson's disease (PD) is a gradually worsening neurodegenerative condition marked by the deterioration of dopaminergic neurons, motor dysfunction, and mitochondrial dysfunction. Trans-chalcone, a natural flavonoid, has shown promise in various disease models because of its antioxidant and anti-inflammatory features. This study investigates the neuroprotective effects of transchalcone in a rat model of PD, focusing on its impact on the activation levels of AMP-activated protein kinase (AMPK) signaling pathway, sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) proteins, and mitochondrial-inflammatory responses.
View Article and Find Full Text PDFMolecules
November 2024
School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
Parkinson's disease (PD) is a prevalent neurodegenerative disease for which no effective treatment currently exists. In this study, we identified formononetin (FMN), a neuroprotective component found in herbal medicines such as and , as a potential agent targeting multiple pathways involved in PD. To investigate the anti-PD effects of FMN, we employed () PD models, specifically the transgenic strain NL5901 and the MPP(+)-induced strain BZ555, to investigate the effects of FMN on the key pathological features of PD, including dyskinesia, dopamine neuron damage, and reactive oxygen species (ROS) accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!