Gas chromatography-olfactometry-mass spectrometry (GC-O-MS) has been very useful in identifying aroma compounds from within the complex matrix of wine. Supplementary separation can be required to overcome co-elution of volatiles or other sensory-directed chromatographic strategies are needed, including multidimensional chromatography and preparative fraction collection coupled to GC. Studies investigating 'overripe orange' aroma in sweet Sauternes wine and the similar 'apricot' aroma in Viognier wine were conducted. Wines with the targeted aroma attributes were selected and concentrated wine extracts prepared. GC-O found no individual aroma compounds with the targeted aroma attribute. Semi-preparative HPLC was used to obtain less complex fractions of the wine extracts. The fractions were eluted in water/ethanol and, therefore, could be smelled directly. Fractions with the targeted aroma character were further resolved by GC-preparative fraction collection (GC-PFC). Recombinational GC-PFC demonstrated the importance of the components within a 4 min preparative GC fraction to the 'overripe orange' aroma of typical Bordeaux dessert wine. In Viognier wine, monoterpenes linalool, α-terpineol and geraniol as well as benzaldehyde were found to be associated with the 'apricot' character. Thus, several wine aroma compounds interact for these specific aromas to be perceived. This sensory-led combination of separation techniques is a powerful tool for the identification of key compounds responsible for specific aromas across the wine and beverage industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2020.461803 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!