How a Quantum Computer Could Solve a Microkinetic Model.

J Phys Chem Lett

Institute for Computational and Data Sciences, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States.

Published: January 2021

A CO oxidation microkinetic model is set up for a quantum circuit. The CO oxidation microkinetic model, and microkinetic models in general, exhibit an advantage of not requiring an encoding step because of being a subclass of systems of equations. The microkinetic model is cast as a nonlinear set of equations at first. Then, a linearizing approximation is made, and the resulting linear set of equations may be iterated to converge to the solution to the nonlinear set of equations. In this CO oxidation, the linearized set of equations is realized to chemical accuracy with one iteration. Current limitations in executing the quantum circuit to obtain the solution are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c03363DOI Listing

Publication Analysis

Top Keywords

microkinetic model
16
set equations
16
oxidation microkinetic
8
quantum circuit
8
nonlinear set
8
microkinetic
5
set
5
equations
5
quantum computer
4
computer solve
4

Similar Publications

Descriptor for electro-oxidation of glycerol with high-efficiency bifunctional Cu-N single atom catalyst and coupled with hydrogen evolution/carbon dioxide reduction.

J Colloid Interface Sci

January 2025

Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023 China. Electronic address:

Electrochemical glycerol oxidation reaction (GOR) presents a promising approach for converting excess glycerol (GLY) into high-value-added products. However, the complex mechanism and the challenge of achieving selectivity for diverse products make GOR difficult to address in both experimental and theoretical studies. In this work, three nitrogen-doped graphene-supported copper single-atom catalysts (CuN@Gra SACs, x = 2-4) were selected as the model system due to their simple structure, excellent conductivity and high structural stability.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.

View Article and Find Full Text PDF

Towards Rational Design of Confined Catalysis in Carbon Nanotube by Machine Learning and Grand Canonical Monte Carlo Simulations.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China.

The microenvironment is recognized to be as crucial as active sites in heterogeneous catalysis. It was found that the catalytic activity of a set of chemical reactions can be significantly influenced by the confined space of carbon nanotubes (CNTs), with some reactions showing superior activity, while others experience a negative impact. The rational design of confined catalysis must rely on the accurate insights of confined microenvironment.

View Article and Find Full Text PDF

Exploring nickel-catalyzed organochalcogen synthesis cross-coupling of benzonitrile and alkyl chalcogenols with computational tools.

Org Biomol Chem

January 2025

Secció de Química Inorgànica, Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.

The preparation of organochalcogens has increased in recent times due to their promising biological activity properties. This work studies the reaction mechanism of a nickel(0)-catalyzed cross-coupling between benzonitrile and propanethiol to produce new C-S bonds by computational means. The proposed mechanism follows the classical oxidative addition/transmetalation/reductive elimination cross-coupling sequence, involving an unusual oxidative addition of a Ph-CN bond onto the active species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!