Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings.

ACS Appl Mater Interfaces

Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada.

Published: January 2021

AI Article Synopsis

  • The "lotus effect" gives rise to superhydrophobic surfaces that have potential uses like self-cleaning and anti-fouling but face challenges such as organic solvent issues and poor mechanical stability.
  • Researchers have developed a new type of superhydrophobic powder coating using polytetrafluoroethylene (PTFE) particles, which simplifies the process by being solvent- and chemical modification-free.
  • These coatings offer excellent durability against abrasion, chemical corrosion, and UV rays, and they can be adjusted for hydrophobicity, making them suitable for various outdoor applications.

Article Abstract

Superhydrophobicity originating from the "lotus effect" enables novel applications such as self-cleaning, anti-fouling, anti-icing, anti-corrosion, and oil-water separation. However, their real-world applications are hindered by some main shortcomings, especially the organic solvent problem, complex chemical modification of nanoparticles, and poor mechanical stability of obtained surfaces. Here, we report for the first time the solvent-free, chemical modification-free, and mechanically, chemically, and UV robust superhydrophobic powder coatings. The coatings were fabricated by adding commercially available polytetrafluoroethylene (PTFE) particles into powder coatings and by following the regular powder-coating processing route. The formation of such superhydrophobic surfaces was attributed to PTFE particles, which hindered the microscale leveling of powder coatings during curing. Through adjusting the dosage of PTFE, the hydrophobicity of obtained coatings can be tuned in a large range (water contact angle from 92 to 162°). The superhydrophobic coatings exhibited remarkable mechanical robustness against abrasion because of the unique hierarchical micro/nanoscale roughness and low surface energy throughout the coating and the solid lubrication effect of PTFE particles. The coatings also have robustness against chemical corrosion and UV irradiation owing to high bonding energy and chemical inertness of PTFE. Moreover, the coatings show attractive performances including self-cleaning, anti-rain, anti-snow, and anti-icing. With these multifaceted features, such superhydrophobic coatings are promising for outdoor applications. This study also contributes to the preparation of robust superhydrophobic surfaces in an environmentally friendly way.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c16582DOI Listing

Publication Analysis

Top Keywords

powder coatings
16
robust superhydrophobic
12
ptfe particles
12
coatings
10
superhydrophobic powder
8
superhydrophobic surfaces
8
superhydrophobic coatings
8
superhydrophobic
6
ptfe
5
solvent-free fabrication
4

Similar Publications

The objective of this study is to investigate the impact of different pH values and chloropropene flow rates on the erosion-corrosion behavior of 316L stainless steel. The influence of various factors on the surface morphology was analyzed using scanning electron microscopy, X-ray powder diffractometry, and electrochemical impedance spectroscopy techniques. The results revealed that at a pH value of 3.

View Article and Find Full Text PDF

In this study, FeCoNiCrSi (x = 0, 4, and 8) powders were successfully prepared using the aerosol method and employed to produce high-entropy coatings on Q235 steel via laser cladding. The microstructure and phase composition of the coatings were analyzed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Corrosion resistance and potential were evaluated through electrochemical analysis and Kelvin probe force microscopy.

View Article and Find Full Text PDF

Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.

View Article and Find Full Text PDF

Ball bearings face numerous challenges under harsh operating conditions of elevated pressure between the balls and other contacting parts of the bearing like drop in tribological properties. To address these challenges, this paper presents the first successful experimental investigation of incorporating an innovative hexagonal boron nitride (h-BN) into Aluminum-Carbon nanotube (Al-0.6 wt% CNTs) nanocomposites.

View Article and Find Full Text PDF

Fabrication and Coating of Porous Ti6Al4V Structures for Application in PEM Fuel Cell and Electrolyzer Technologies.

Materials (Basel)

December 2024

Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain.

The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!