A neuro-evolution approach to infer a Boolean network from time-series gene expressions.

Bioinformatics

School of IT Convergence, University of Ulsan, Ulsan 44610, Republic of Korea.

Published: December 2020

Summary: In systems biology, it is challenging to accurately infer a regulatory network from time-series gene expression data, and a variety of methods have been proposed. Most of them were computationally inefficient in inferring very large networks, though, because of the increasing number of candidate regulatory genes. Although a recent approach called GABNI (genetic algorithm-based Boolean network inference) was presented to resolve this problem using a genetic algorithm, there is room for performance improvement because it employed a limited representation model of regulatory functions.In this regard, we devised a novel genetic algorithm combined with a neural network for the Boolean network inference, where a neural network is used to represent the regulatory function instead of an incomplete Boolean truth table used in the GABNI. In addition, our new method extended the range of the time-step lag parameter value between the regulatory and the target genes for more flexible representation of the regulatory function. Extensive simulations with the gene expression datasets of the artificial and real networks were conducted to compare our method with five well-known existing methods including GABNI. Our proposed method significantly outperformed them in terms of both structural and dynamics accuracy.

Conclusion: Our method can be a promising tool to infer a large-scale Boolean regulatory network from time-series gene expression data.

Availability And Implementation: The source code is freely available at https://github.com/kwon-uou/NNBNI.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btaa840DOI Listing

Publication Analysis

Top Keywords

boolean network
12
network time-series
12
time-series gene
12
gene expression
12
regulatory network
8
network inference
8
genetic algorithm
8
neural network
8
regulatory function
8
network
7

Similar Publications

Deep neural networks have an inbuilt Occam's razor.

Nat Commun

January 2025

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.

The remarkable performance of overparameterized deep neural networks (DNNs) must arise from an interplay between network architecture, training algorithms, and structure in the data. To disentangle these three components for supervised learning, we apply a Bayesian picture based on the functions expressed by a DNN. The prior over functions is determined by the network architecture, which we vary by exploiting a transition between ordered and chaotic regimes.

View Article and Find Full Text PDF

Background: In the realm of system biology, it is a challenging endeavor to infer a gene regulatory network from time-series gene expression data. Numerous Boolean network inference techniques have emerged for reconstructing a gene regulatory network from a time-series gene expression dataset. However, most of these techniques pose scalability concerns given their capability to consider only two to three regulatory genes over a specific target gene.

View Article and Find Full Text PDF

Can we turn AI black boxes into code? Although this mission sounds extremely challenging, we show that it is not entirely impossible by presenting a proof-of-concept method, MIPS, that can synthesize programs based on the automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm.

View Article and Find Full Text PDF

Introduction: Medicine quality can be influenced by environmental factors. In low- and middle-income countries (LMICs) with tropical climates, storage facilities of medicines in healthcare settings and homes may be suboptimal. However, knowledge of the effects of temperature and other climatic and environmental factors on the quality of medicines is limited.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!