The atmospheric electric field is an important research parameter in understanding storm electrification and energy exchange between lightning and the atmosphere across the globe. The near-surface electric field can range from a few V/m (order of 10-100 V/m), mainly produced by the currents in the global electric circuit and local charge perturbations, to tens of kV/m in the presence of electrified clouds. The electric field mill (EFM), a variable capacitance electrometer, has been the instrument of choice in the atmospheric electricity community studying phenomena associated with the atmospheric electric field. The EFM is particularly useful in following storm movement and evolution, monitoring the fair-weather electric field at distant locations, and measuring the vertical electric field inside clouds with EFM deployments on balloons. In this paper, we describe a new electric field mill ground-based design, which focuses on lowering the manufacturing and operational costs of doing research with an array of EFM instruments while maintaining the scientific capabilities offered by past designs and commercially available devices. The theory of operation, data processing, and calibration of the instrument are also described. Example data from the first generation of these new field mills, deployed in the RELAMPAGO campaign in Argentina, are presented here. The RELAMPAGO deployment and data set illustrate important strengths of this design, for example, cost, autonomy, longevity, and measurement quality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757252 | PMC |
http://dx.doi.org/10.1029/2020EA001309 | DOI Listing |
Sci Rep
December 2024
Jihua Laboratory, Foshan, 528000, China.
Surface-enhanced Raman scattering (SERS) technology has attracted more and more attention due to its high sensitivity, low water interference, and quick measurement. Constructing high-performance SERS substrates with high sensitivity, uniformity and reproducibility is of great importance to put the SERS technology into practical application. In this paper, we report a simple fabrication process to construct dense silver-coated PMMA nanoparticles-on-a-mirror SRES substrates.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical Engineering, Sejong University, Seoul, Republic of Korea.
Nonthermal plasma has been extensively utilized in various biomedical fields, including surface engineering of medical implants to enhance their biocompatibility and osseointegration. To ensure robustness and cost effectiveness for commercial viability, stable and effective plasma is required, which can be achieved by reducing gas pressure in a controlled volume. Here, we explored the impact of reduced gas pressure on plasma properties, surface characteristics of plasma-treated implants, and subsequent biological outcomes.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.
Extending ferroelectric materials to two-dimensional limit provides versatile applications for the development of next-generation nonvolatile devices. Conventional ferroelectricity requires materials consisting of at least two constituent elements associated with polar crystalline structures. Monolayer graphene as an elementary two-dimensional material unlikely exhibits ferroelectric order due to its highly centrosymmetric hexagonal lattices.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.
View Article and Find Full Text PDFNat Commun
December 2024
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Electrochemical nitrate reduction reaction offers a sustainable and efficient pathway for ammonia synthesis. Maintaining satisfactory Faradaic efficiency for long-term nitrate reduction under ampere-level current density remains challenging due to the inevitable hydrogen evolution, particularly in pure nitrate solutions. Herein, we present the application of electron deficiency of Ru metals to boost the repelling effect of counter K ions via the electric-field-dependent synergy of interfacial water and cations, and thus largely promote nitrate reduction reaction with a high yield and well-maintained Faradaic efficiency under ampere-level current density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!