MicroRNA-361-5p (miR-361-5p) is a tumor suppressor miRNA that is dysregulated in several types of human cancer. However, the functional significance of miR-361-5p in hepatocellular carcinoma (HCC) is unclear. This study explored the biological function of miR-361-5p in regulating the progression of HCC and the underlying molecular mechanism. RT-qPCR analysis showed that miR-361-5p was downregulated in HCC tissues and cell lines. Functional analysis revealed that miR-361-5p acted as a tumor suppressor, inhibiting cell proliferation, migration, and invasion in HCC cell lines. Bioinformatics analyses identified Twist1 as a direct target of miR-361-5p, which was validated by dual-luciferase reporter assays, RT-qPCR, and western blotting. Rescue experiments indicated that Twist1 may mediate the tumor-suppressive effect of miR-361-5p in HCC cells, and this was supported by the effect of miR-361-5p on inhibiting the epithelial-mesenchymal transition (EMT) by targeting Twist1. This study is the first to suggest that miR-361-5p inhibits tumorigenesis and EMT in HCC by targeting Twist1. These findings are valuable for the diagnosis and clinical management of HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762665PMC
http://dx.doi.org/10.1155/2020/8891876DOI Listing

Publication Analysis

Top Keywords

targeting twist1
12
mir-361-5p
9
inhibits tumorigenesis
8
tumorigenesis emt
8
hcc
8
emt hcc
8
hcc targeting
8
tumor suppressor
8
cell lines
8
twist1
5

Similar Publications

Activation of sphingosine-1-phosphate receptor 2 (S1PR2) upregulates dihydropyrimidine dehydrogenase (DPD) expression in colon cancer cells.

J Adv Res

January 2025

Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, China; Joint Laboratory for Research & Treatment of Spinal Cord Injury in Spinal Deformity, Capital Medical University, Beijing, China. Electronic address:

Introduction: Dihydropyrimidine dehydrogenase (DPD) is a major determinant of cancer 5-fluorouracyl (5-FU) resistance via its direct degradation. However, the mechanisms of tumoral DPD upregulation have not been fully understood.

Objectives: This study aimed to explore the role of S1PR2 in the regulation of tumoral DPD expression, identifying S1PR2 as the potential target for reversing 5-FU resistance.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a degenerative autoimmune disease, often managed through symptomatic treatment. The co-occurrence of the reported extra-articular comorbidities such as inflammatory bowel disease (IBD), and dementia may complicate the pathology of the disease as well as the treatment strategies. Therefore, in our study, we aim to elucidate the key genes, and regulatory elements implicated in the progression and association of these diseases, thereby highlighting the linked potential therapeutic targets.

View Article and Find Full Text PDF

Ovarian cancer (OC) is the second most common female reproductive cancer and the most lethal gynecological malignancy worldwide. Most human OCs are characterized by high rates of drug resistance and metastasis, leading to poor prognosis. Improving the outcomes of patients with relapsed and treatment-resistant OC remains a challenge.

View Article and Find Full Text PDF

Diseases affecting bone encompass a spectrum of disorders, from prevalent conditions such as osteoporosis and Paget's disease, collectively impacting millions, to rare genetic disorders including Fibrodysplasia Ossificans Progressiva (FOP). While several classes of drugs, such as bisphosphonates, synthetic hormones, and antibodies, are utilized in the treatment of bone diseases, their efficacy is often curtailed by issues of tolerability and high incidence of adverse effects. Developing therapeutic agents for bone diseases is hampered by the fact that numerous pathways regulating bone metabolism also perform pivotal functions in other organ systems.

View Article and Find Full Text PDF

The aim of this study was to investigate the potential mechanism of Lu-Jiao Fang (LJF) inhibiting endothelial-to-mesenchymal transition (EndMT) in pressure overload-induced cardiac fibrosis. Pharmacokinetic behaviors of the ingredients of LJF were evaluated by LC-MS/MS analysis. Then putative pathways by which LJF regulates EndMT were analyzed by network pharmacology and verified in transverse aortic constriction-induced cardiac fibrosis rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!