Signaling Functions of Intramembrane Aspartyl-Proteases.

Front Cardiovasc Med

Biochemistry and Molecular Biology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany.

Published: December 2020

Intramembrane proteolysis is more than a mechanism to "clean" the membranes from proteins no longer needed. By non-reversibly modifying transmembrane proteins, intramembrane cleaving proteases hold key roles in multiple signaling pathways and often distinguish physiological from pathological conditions. Signal peptide peptidase (SPP) and signal peptide peptidase-like proteases (SPPLs) recently have been associated with multiple functions in the field of signal transduction. SPP/SPPLs together with presenilins (PSs) are the only two families of intramembrane cleaving aspartyl proteases known in mammals. PS1 or PS2 comprise the catalytic center of the γ-secretase complex, which is well-studied in the context of Alzheimer's disease. The mammalian SPP/SPPL family of intramembrane cleaving proteases consists of five members: SPP and its homologous proteins SPPL2a, SPPL2b, SPPL2c, and SPPL3. Although these proteases were discovered due to their homology to PSs, it became evident in the past two decades that no physiological functions are shared between these two families. Based on studies in cell culture models various substrates of SPP/SPPL proteases have been identified in the past years and recently-developed mouse lines lacking individual members of this protease family, will help to further clarify the physiological functions of these proteases. In this review we concentrate on signaling roles of mammalian intramembrane cleaving aspartyl proteases. In particular, we will highlight the signaling roles of PS via its substrates NOTCH, VEGF, and others, mainly focusing on its involvement in vasculature. Delineating also signaling pathways that are affected and/or controlled by SPP/SPPL proteases. From SPP's participation in tumor progression and survival, to SPPL3's regulation of protein glycosylation and SPPL2c's control over cellular calcium stores, various crossovers between proteolytic activity of intramembrane proteases and cell signaling will be described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768045PMC
http://dx.doi.org/10.3389/fcvm.2020.591787DOI Listing

Publication Analysis

Top Keywords

intramembrane cleaving
16
proteases
10
cleaving proteases
8
signaling pathways
8
signal peptide
8
cleaving aspartyl
8
aspartyl proteases
8
physiological functions
8
spp/sppl proteases
8
signaling roles
8

Similar Publications

Article Synopsis
  • Alzheimer's disease (AD) is linked to secretases, which are enzymes that cleave proteins, playing a vital role in regulating key factors like amyloid precursor protein (APP) and Notch that influence both AD and cancer.
  • The article details the functions, cleavage sites, and biological roles of six secretase types (α, β, γ, δ, ε, η) and highlights their similarities and differences in how they interact with APP and Notch to affect disease progression.
  • It also discusses the potential of secretase inhibitors as a treatment strategy in AD and cancer, reviewing their chemical structures, current research stages, and future development prospects.
View Article and Find Full Text PDF

Structural insights into regulated intramembrane proteolysis by the positive alginate regulator MucP from Pseudomonas aeruginosa.

Biochem Biophys Res Commun

December 2024

College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China. Electronic address:

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF

Rhomboid proteases are ubiquitous intramembrane serine proteases that can cleave transmembrane substrates within lipid bilayers. They exhibit many and diverse functions, such as but not limited to, growth factor signaling, immune and inflammatory response, protein quality control, and parasitic invasion. Human rhomboid protease RHBDL4 has been demonstrated to play a critical role in removing misfolded proteins from the Endoplasmic Reticulum and is implicated in severe diseases such as various cancers and Alzheimer's disease.

View Article and Find Full Text PDF

A Non-Canonical p75HER2 Signaling Pathway Underlying Trastuzumab Action and Resistance in Breast Cancer.

Cells

August 2024

Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.

Overexpression of HER2 occurs in 25% of breast cancer. Targeting HER2 has proven to be an effective therapeutic strategy for HER2-positive breast cancer. While trastuzumab is the most commonly used HER2 targeting agent, which has significantly improved outcomes, the overall response rate is low.

View Article and Find Full Text PDF

Lipid-polymer nanoparticles to probe the native-like environment of intramembrane rhomboid protease GlpG and its activity.

Nat Commun

August 2024

Research Unit Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125, Berlin, Germany.

Polymers can facilitate detergent-free extraction of membrane proteins into nanodiscs (e.g., SMALPs, DIBMALPs), incorporating both integral membrane proteins as well as co-extracted native membrane lipids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!