Zinc lactate (ZnLA) is a new organic zinc salt which has antioxidant properties in mammals and can improve intestinal function. This study explored the effects of ZnLA and ZnSO on cell proliferation, Zn transport, antioxidant capacity, mitochondrial function, and their underlying molecular mechanisms in intestinal porcine epithelial cells (IPEC-J2). The results showed that addition of ZnLA promoted cell proliferation, inhibited cell apoptosis and IL-6 secretion, and upregulated the mRNA expression and concentration of MT-2B, ZNT-1, and CRIP, as well as affected the gene expression and activity of oxidation or antioxidant enzymes (e.g., CuZnSOD, CAT, and Gpx1, GSH-PX, LDH, and MDA), compared to ZnSO or control. Compared with the control, ZnLA treatment had no significant effect on mitochondrial membrane potential, whereas it markedly increased the mitochondrial basal OCR, nonmitochondrial respiratory capacity, and mitochondrial proton leakage and reduced spare respiratory capacity and mitochondrial reactive oxygen (ROS) production in IPEC-J2 cells. Furthermore, ZnLA treatment increased the protein expression of Nrf2 and phosphorylated AMPK, but reduced Keap1 and p62 protein expression and autophagy-related genes LC3B-1 and Beclin mRNA abundance. Under HO-induced oxidative stress conditions, ZnLA supplementation markedly reduced cell apoptosis and mitochondrial ROS levels in IPEC-J2 cells. Moreover, ZnLA administration increased the protein expression of Nrf2 and decreased the protein expression of caspase-3, Keap1, and p62 in HO-induced IPEC-J2 cells. In addition, when the activity of AMPK was inhibited by Compound C, ZnLA supplementation did not increase the protein expression of nuclear Nrf2, but when Compound C was removed, the activities of AMPK and Nfr2 were both increased by ZnLA treatment. Our results indicated that ZnLA could improve the antioxidant capacity and mitochondrial function in IPEC-J2 cells by activating the AMPK-Nrf2-p62 pathway under normal or oxidative stress conditions. Our novel finding also suggested that ZnLA, as a new feed additive for piglets, has the potential to be an alternative for ZnSO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7762675PMC
http://dx.doi.org/10.1155/2020/8815383DOI Listing

Publication Analysis

Top Keywords

protein expression
20
capacity mitochondrial
16
ipec-j2 cells
16
mitochondrial function
12
znla treatment
12
znla
11
zinc lactate
8
mitochondrial
8
intestinal porcine
8
porcine epithelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!