A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photosynthetic energy conversion efficiency in the West Antarctic Peninsula. | LitMetric

Photosynthetic energy conversion efficiency in the West Antarctic Peninsula.

Limnol Oceanogr

Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers The State University of New Jersey New Brunswick New Jersey USA.

Published: December 2020

The West Antarctic Peninsula (WAP) is a highly productive polar ecosystem where phytoplankton dynamics are regulated by intense bottom-up control from light and iron availability. Rapid climate change along the WAP is driving shifts in the mixed layer depth and iron availability. Elucidating the relative role of each of these controls and their interactions is crucial for understanding of how primary productivity will change in coming decades. Using a combination of ultra-high-resolution variable chlorophyll fluorescence together with fluorescence lifetime analyses on the 2017 Palmer Long Term Ecological Research cruise, we mapped the temporal and spatial variability in phytoplankton photophysiology across the WAP. Highest photosynthetic energy conversion efficiencies and lowest fluorescence quantum yields were observed in iron replete coastal regions. Photosynthetic energy conversion efficiencies decreased by ~ 60% with a proportional increase in quantum yields of thermal dissipation and fluorescence on the outer continental shelf and slope. The combined analysis of variable fluorescence and lifetimes revealed that, in addition to the decrease in the fraction of inactive reaction centers, up to 20% of light harvesting chlorophyll-protein antenna complexes were energetically uncoupled from photosystem II reaction centers in iron-limited phytoplankton. These biophysical signatures strongly suggest severe iron limitation of photosynthesis in the surface waters along the continental slope of the WAP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754432PMC
http://dx.doi.org/10.1002/lno.11562DOI Listing

Publication Analysis

Top Keywords

photosynthetic energy
12
energy conversion
12
west antarctic
8
antarctic peninsula
8
iron availability
8
conversion efficiencies
8
quantum yields
8
reaction centers
8
fluorescence
5
conversion efficiency
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!