Background: Within the last decade, robotically-assisted laparoscopic prostatectomy (RALP) has become the standard for treating localized prostate cancer, causing a revival of the 45° Trendelenburg position. In this pilot study we investigated effects of Trendelenburg position on hemodynamics and cerebral oxygenation in patients undergoing RALP.
Methods: We enrolled 58 patients undergoing RALP and 22 patients undergoing robot-assisted partial nephrectomy (RAPN) (control group) in our study. Demographic patient data and intraoperative parameters including cerebral oxygenation and cerebral hemodynamics were recorded for all patients. Cerebral function was also assessed pre- and postoperatively via the Mini Mental Status (MMS) exam. Changes in parameters during surgery were modelled by a mixed effects model; changes in the MMS result were evaluated using the Wilcoxon signed rank test.
Results: Preoperative assessment of patient characteristics, standard blood values and vital parameters revealed no difference between the two groups.
Conclusions: Applying a 45° Trendelenburg position causes no difference in postoperative brain function, and does not alter cerebral oxygenation during a surgical procedure lasting up to 5 h. Further studies in larger patient cohorts will have to confirm these findings.
Trial Registration: German Clinical Trial Registry; DRKS00005094; Registered 12th December 2013-Retrospectively registered; https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00005094 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772899 | PMC |
http://dx.doi.org/10.1186/s12894-020-00774-4 | DOI Listing |
Zool Res
January 2025
Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, Gyeongsangnam-do 50612, Republic of Korea.
Polystyrene nanoparticles pose significant toxicological risks to aquatic ecosystems, yet their impact on zebrafish ( ) embryonic development, particularly erythropoiesis, remains underexplored. This study used single-cell RNA sequencing to comprehensively evaluate the effects of polystyrene nanoparticle exposure on erythropoiesis in zebrafish embryos. validation experiments corroborated the transcriptomic findings, revealing that polystyrene nanoparticle exposure disrupted erythrocyte differentiation, as evidenced by the decrease in mature erythrocytes and concomitant increase in immature erythrocytes.
View Article and Find Full Text PDFZool Res
January 2025
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, China.
DNA2, a multifunctional enzyme with structure-specific nuclease, 5 -to-3 helicase, and DNA-dependent ATPase activities, plays a pivotal role in the cellular response to DNA damage. However, its involvement in cerebral ischemia/reperfusion (I/R) injury remains to be elucidated. This study investigated the involvement of DNA2 in cerebral I/R injury using conditional knockout (cKO) mice ( -Cre) subjected to middle cerebral artery occlusion (MCAO), an established model of cerebral I/R.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
Zero echo time (zero-TE) pulse sequences provide a quiet and artifact-free alternative to conventional functional magnetic resonance imaging (fMRI) pulse sequences. The fast readouts (<1 ms) utilized in zero-TE fMRI produce an image contrast with negligible contributions from blood oxygenation level-dependent (BOLD) mechanisms, yet the zero-TE contrast is highly sensitive to brain function. However, the precise relationship between the zero-TE contrast and neuronal activity has not been determined.
View Article and Find Full Text PDFFront Aging Neurosci
January 2025
Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University, Ningbo, China.
Background: Studies have shown the clinical effects of repetitive transcranial magnetic stimulation (rTMS) on depression in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. The measurement of brain activation links neurobiological and functional aspects but is challenging in patients with dementia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!