A novel four-gene of iron metabolism-related and methylated for prognosis prediction of hepatocellular carcinoma.

Bioengineered

Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.

Published: December 2021

Hepatocellular carcinoma (HCC) is a liver disease with a complex underlying mechanism, and patients with HCC have low survival rates. Iron metabolism plays a crucial role in the pathogenesis of HCC; however, the prognostic value of iron metabolism-related and methylated genes for HCC needs to be further explored. In the present study, we identified differentially expressed genes (DEGs) that play a role in iron metabolism and DNA methylation in HCC from The Cancer Genome Atlas. Four of these DEGs, whose expression levels are correlated with HCC prognosis, namely, RRM2, FTCD, CYP2C9, and ATP6V1C1, were further used to construct a prognostic model for HCC, wherein the risk score was calculated using the gene expression of the four DEGs. This could be used to predict the overall survival of HCC patients for 1, 3, and 5 years. Results of a multivariate Cox regression analysis further indicated that the risk score was an independent variable correlated with the prognosis of HCC patients. The identified gene signature was further validated using an independent cohort of HCC patients from the International Cancer Genome Consortium. Weighted gene co-expression network analysis and gene set enrichment analysis were performed to identify potential regulatory mechanisms of the gene signature in HCC. Taken together, we identified key prognostic factors of iron metabolism-related and methylated genes for HCC, providing a potential treatment strategy for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8806199PMC
http://dx.doi.org/10.1080/21655979.2020.1866303DOI Listing

Publication Analysis

Top Keywords

hcc
13
iron metabolism-related
12
metabolism-related methylated
12
hcc patients
12
hepatocellular carcinoma
8
iron metabolism
8
methylated genes
8
genes hcc
8
cancer genome
8
risk score
8

Similar Publications

c-FLIP/Ku70 complex; A potential molecular target for apoptosis induction in hepatocellular carcinoma.

Arch Biochem Biophys

January 2025

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide and the most common form of liver cancer. Despite global efforts toward early diagnosis and effective treatments, HCC is often diagnosed at advanced stages, where conventional therapies frequently lead to resistance and/or high recurrence rates. Therefore, novel biomarkers and promising medications are urgently required.

View Article and Find Full Text PDF

STAT3 Orchestrates Immune Dynamics in Hepatocellular Carcinoma: A Pivotal Nexus in Tumor Progression.

Crit Rev Oncol Hematol

January 2025

Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.

Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms.

View Article and Find Full Text PDF

Automated ultrasonography of hepatocellular carcinoma using discrete wavelet transform based deep-learning neural network.

Med Image Anal

January 2025

Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon, 440-746, South Korea. Electronic address:

This study introduces HCC-Net, a novel wavelet-based approach for the accurate diagnosis of hepatocellular carcinoma (HCC) from abdominal ultrasound (US) images using artificial neural networks. The HCC-Net integrates the discrete wavelet transform (DWT) to decompose US images into four sub-band images, a lesion detector for hierarchical lesion localization, and a pattern-augmented classifier for generating pattern-enhanced lesion images and subsequent classification. The lesion detection uses a hierarchical coarse-to-fine approach to minimize missed lesions.

View Article and Find Full Text PDF

Background And Aims: Around 750,000 patients per year will be cured of HCV infection until 2030. Those with compensated advanced chronic liver disease remain at risk for hepatic decompensation and de novo HCC. Algorithms have been developed to stratify risk early after cure; however, data on long-term outcomes and the prognostic utility of these risk stratification algorithms at later time points are lacking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!