The integrated Miniaturized Electrostatic Analyzer (iMESA) was a satellite-based ionospheric sensor that operated on NASA's Space Test Program Satellite (STPSat-3) from December 2013 to July 2019. The instrument's scientific objective was to (1) measure the plasma density in low Earth orbit, (2) measure the plasma temperature in low Earth orbit, and (3) quantify the spacecraft potential with respect to the ambient plasma potential in the ionosphere. iMESA sampled the ionosphere every 10 s by measuring the ion current density through the ESA as a result of the motion of the spacecraft through the plasma. Current density spectra were transmitted to the ground where they were post-processed into ion density spectra and then analyzed numerically to determine the ion density, ion temperature, and spacecraft potential. This article discusses the instrument design and simulation, the determination of a geometric factor, and data processing procedures and evaluates the final data product with regard to the mission success criteria. The ion density and ion temperature captured by the iMESA instrument are on the same order and range as the values predicted in the literature. The spacecraft potential was also quantified. The conclusion after the evaluation of the instrument's data product is that the scientific mission is successful on all three points.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0019354 | DOI Listing |
Inorg Chem
January 2025
Beijing Spacecrafts Manufacturing Factory, Beijing 100094, P. R. China.
The rapid upsurge of metal-organic frameworks (MOFs) has sparked profound interest in their potential as proton conductors for proton exchange membrane fuel cells. However, proton-conducting behaviors of hydrophobic MOFs remain poorly understood compared with their hydrophilic counterparts, largely due to the absence of a microscopic phase separation structure akin to that found in Nafion membranes. Herein, we demonstrate a strategy for regulating the structures and proton conductivities of MOFs by separately incorporating hydrophobic -C(CF)- group alongside hydrophilic -O- and -SO- groups into organic ligands as linkers.
View Article and Find Full Text PDFLaser communications (lasercom) can enable more efficient and higher bandwidth communications than conventional radio frequency (RF) systems, but requires more sophisticated pointing and tracking (PAT) systems to acquire and maintain links. Liquid lens arrays can provide compact, nonmechanical beam steering as an alternative to fast-steering mirrors and mechanical gimbals. An array of two liquid lenses offset in perpendicular axes along with a third on-axis lens in the array are used for beam steering and divergence control, respectively.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2025
Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States; Department of Ophthalmology, Blanton Eye Institute, Houston Methodist Hospital, Houston, Texas, United States; Departments of Ophthalmology, Neurology, and Neurosurgery, Weill Cornell Medicine, New York, New York, United States; Department of Ophthalmology, University of Texas Medical Branch, Galveston, Texas, United States; University of Texas MD Anderson Cancer Center, Houston, Texas, United States; Texas A&M College of Medicine, Texas, United States; Department of Ophthalmology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, United States; The Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas, United States.
With increasing advancements and efforts towards space exploration, there is a pressing need to understand the impacts of spaceflight on astronauts' health. Astronauts have reported signs and symptoms of dry eye disease upon traveling to the International Space Station (ISS), thus necessitating an evaluation of the factors that contribute to the onset of spaceflight associated dry eye disease. Prior literature describes the hypercapnic environment of the ISS; however, the link between the high CO levels and astronauts' symptoms of dry eye disease remains unexplored.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
State Key Laboratory of Nonferrous Metals and Processes, GRIMN Group Co., Ltd., Beijing 100088, China.
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, United States.
Structural health monitoring (SHM) systems are critical in ensuring the safety of space exploration, as spacecraft and structures can experience detrimental stresses and strains. By deploying conventional strain gauges, SHM systems can promptly detect and assess localized strain behaviors in structures; however, these strain gauges are limited by low sensitivity (gauge factor, GF ∼ 2). This study introduces an approach to printing strain gauges with high sensitivity, while also considering stretchability and long-term durability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!