Research has shown that using acoustic radiation modes combined with surface velocity measurements provide an accurate method of measuring the radiated sound power from vibrating plates. This paper investigates the extension of this method to acoustically radiating cylindrical structures. The mathematical formulations of the radiation resistance matrix and the accompanying acoustic radiation modes of a baffled cylinder are developed. Computational sound power calculations using the vibration-based radiation mode (VBRM) method and the boundary element method are then compared and shown to have good agreement. Experimental surface velocity measurements of a cylinder are taken using a scanning laser Doppler vibrometer and the VBRM method is used to calculate sound power. The results are compared to sound power measurements taken using ISO 3741.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0002870DOI Listing

Publication Analysis

Top Keywords

sound power
20
power vibrating
8
radiation resistance
8
resistance matrix
8
acoustic radiation
8
radiation modes
8
surface velocity
8
velocity measurements
8
vbrm method
8
sound
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!