Under a parallel magnetic field, after long-term copper deposition from an acidic copper sulfate solution, numerous spherical secondary nodules of 10 to 100 μm diameters were formed one upon another in dendritic mode. This is a new type of micro-magnetohydrodynamic (MHD) effect arising from the unstable growth of three-dimensional (3D) and two-dimensional (2D) nuclei by specific adsorption of hydrogen ions (second micro-MHD effect). From the viewpoint of instability in electrodeposition, though 3D nucleation in the diffusion layer is always unstable, with ionic specific adsorption such as hydrogen ions, stable 2D nucleation turns unstable after long-term deposition. The resultant competitive growth of 3D and 2D nuclei produces spherical nodules as their composite, leading to their dendritic growth. Furthermore, though negligibly small, nonequilibrium fluctuations occurring in 2D nucleation migrate with the laminar solution flow caused by Lorentz force (MHD flow). Depending on whether the ionic adsorption is specific or nonspecific, the traveling asymmetrical fluctuation changes the direction to the upstream or downstream side, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c05903DOI Listing

Publication Analysis

Top Keywords

parallel magnetic
8
magnetic field
8
specific adsorption
8
adsorption hydrogen
8
hydrogen ions
8
long-term electrodeposition
4
electrodeposition uniform
4
uniform parallel
4
field instability
4
instability two-dimensional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!