Quantitative phase microscopy (QPM) is a label-free technique that enables monitoring of morphological changes at the subcellular level. The performance of the QPM system in terms of spatial sensitivity and resolution depends on the coherence properties of the light source and the numerical aperture (NA) of objective lenses. Here, we propose high space-bandwidth quantitative phase imaging using partially spatially coherent digital holographic microscopy (PSC-DHM) assisted with a deep neural network. The PSC source synthesized to improve the spatial sensitivity of the reconstructed phase map from the interferometric images. Further, compatible generative adversarial network (GAN) is used and trained with paired low-resolution (LR) and high-resolution (HR) datasets acquired from the PSC-DHM system. The training of the network is performed on two different types of samples, i.e. mostly homogenous human red blood cells (RBC), and on highly heterogeneous macrophages. The performance is evaluated by predicting the HR images from the datasets captured with a low NA lens and compared with the actual HR phase images. An improvement of 9× in the space-bandwidth product is demonstrated for both RBC and macrophages datasets. We believe that the PSC-DHM + GAN approach would be applicable in single-shot label free tissue imaging, disease classification and other high-resolution tomography applications by utilizing the longitudinal spatial coherence properties of the light source.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.402666 | DOI Listing |
J Clin Oncol
January 2025
Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Chinese University of China, Shatin, Hong Kong Special Administrative Region, China.
Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.
View Article and Find Full Text PDFJCO Clin Cancer Inform
January 2025
Department of Radiology, Dr BRAIRCH, All India Institute of Medical Sciences, New Delhi, India.
Purpose: To explore the perceived utility and effect of simplified radiology reports on oncology patients' knowledge and feasibility of large language models (LLMs) to generate such reports.
Materials And Methods: This study was approved by the Institute Ethics Committee. In phase I, five state-of-the-art LLMs (Generative Pre-Trained Transformer-4o [GPT-4o], Google Gemini, Claude Opus, Llama-3.
J Appl Oral Sci
January 2025
Ningde Hospital Affiliated to Ningde Normal University, Department of Stomatology, Fujian, China.
Objective: This study aimed to investigate the role of transmembrane emp24 domain-containing protein 2 (TMED2) in oral squamous cell carcinoma (OSCC).
Methodology: A bioinformatics analysis was first conducted to explore TMED2 expression in OSCC and its relation with overall survival. The analysis results were further verified by assessing TMED2 expression levels in human normal oral keratinocyte cells and human OSCC cell lines using quantitative real-time polymerase chain reaction and the Western blot.
Anal Chem
January 2025
Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States.
The nuclear pore complex (NPC) is the proteinous nanopore that solely regulates molecular transport between the nucleus and cytoplasm of a eukaryotic cell. Hypothetically, the NPC utilizes the hydrophobic barriers based on the repeats of phenylalanine-glycine (FG) units to selectively and efficiently transport macromolecules. Herein, we quantitatively assess the hydrophobicity of transport barriers confined in the nanopore by applying scanning electrochemical microscopy (SECM).
View Article and Find Full Text PDFFam Pract
January 2025
Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia.
Background: The optimal control of type 2 diabetes (T2D) is defined by the innate mastery of self-management behaviours. This study is designed to condense the lived experiences of people with T2D in relation to factors 'exterior' to themselves into a universal self-management inventory (Assessment of Self-Management Questionnaire in Diabetes Mellitus-External Reality; ASQ-DM-EX).
Methods: We collected responses to an online and physical survey from people living with T2D through a quantitative cross-sectional study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!