A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast self-learning modulation recognition method for smart underwater optical communication systems. | LitMetric

Automatic modulation recognition (AMR) is an integral part of an intelligent transceiver for future underwater optical wireless communications (UOWC). In this paper, an orthogonal frequency division multiplexing (OFDM) based progressive growth meta-learning (PGML) AMR scheme is proposed and analyzed over UOWC turbulence channels. The novel PGML few-shot AMR framework, mainly suffering from the severe underwater environments, can achieve fast self-learning for new tasks with less training time and data. In the PGML algorithm, the few-shot classifier, which works in the presence of Poisson noise, is fed with constellations of noisy signals in bad signal-to-noise ratio (SNR) scenarios directly. Moreover, the data augmentation (DA) operation is adopted to mitigate the impact of light-emitting diode (LED) distortion, yielding further classification accuracy improvements. Simulation results demonstrate that the proposed PGML scheme outperforms the classical meta-learning (ML) approach in training efficiency, robustness against Poisson noise and generalization performance on a new task.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.412371DOI Listing

Publication Analysis

Top Keywords

fast self-learning
8
modulation recognition
8
underwater optical
8
poisson noise
8
self-learning modulation
4
recognition method
4
method smart
4
smart underwater
4
optical communication
4
communication systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!