Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The work considers the effect of extraordinary optical transmission (EOT) in polycrystalline arrays of nanopores fabricated via nanosphere photolithography (NPL). The use of samples with different qualities of polycrystalline structure allows us to reveal the role of disorder for EOT. We propose a phenomenological model which takes the disorder into account in numerical simulations and validate it using experimental data. Due to the NPL flexibility for the structure geometry control, we demonstrate the possiblity to partially compensate the disorder influence on EOT by the nanopore depth adjustments. The proposed experimental and theoretical results are promising to reveal the NPL limits for EOT-based devices and stimulate systematic studies of disorder compensation designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.408772 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!