We use low-resolution optical lithography joined with solid state dewetting of crystalline, ultra-thin silicon on insulator (c-UT-SOI) to form monocrystalline, atomically smooth, silicon-based Mie resonators in well-controlled large periodic arrays. The dewetted islands have a typical size in the 100 nm range, about one order of magnitude smaller than the etching resolution. Exploiting a 2 µm thick SiO layer separating the islands and the underlying bulk silicon wafer, we combine the resonant modes of the antennas with the etalon effect. This approach sets the resonance spectral position and improves the structural colorization and the contrast between scattering maxima and minima of individual resonant antennas. Our results demonstrate that templated dewetting enables the formation of defect-free, faceted islands that are much smaller than the nominal etching resolution and that an appropriate engineering of the substrate improves their scattering properties. These results are relevant to applications in spectral filtering, structural color and beam steering with all-dielectric photonic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.409001 | DOI Listing |
Light Sci Appl
January 2025
Institute for Photon Science and Technology, The University of Tokyo, Tokyo, Japan.
Light manipulation and control are essential in various contemporary technologies, and as these technologies evolve, the demand for miniaturized optical components increases. Planar-lens technologies, such as metasurfaces and diffractive optical elements, have gained attention in recent years for their potential to dramatically reduce the thickness of traditional refractive optical systems. However, their fabrication, particularly for visible wavelengths, involves complex and costly processes, such as high-resolution lithography and dry-etching, which has limited their availability.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
Background: Bee venom consists of more than 50 % melittin (MLT), which has anti-cancer, anti-inflammatory, and antimicrobial properties. Bee venom also contains toxic components such as phospholipase A2 (PLA2) and hyaluronidase (HYA), which cause allergic reactions, so the toxic components must be removed to use MLT. In previous studies, analytical methods were used to separate MLT.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an, University of Technology, Xi'an 710048, PR China.
The use of toxic resists and complex procedures has impeded the resolution and quality of micro/nanofabrication on virtually arbitrary substrates via photolithography. To fabricate a precise and high-resolution pattern, a sericin nanofilm-based coating was developed by reducing disulfide bonds and subsequently assembling sericin protein. Upon exposure to ultraviolet (UV) light, intermolecular amide bonds in sericin are cleaved through the action of a reducing agent, allowing the reduced sericin (rSer) coating to exhibit the functional ability to generate diverse geometric micro/nanopatterns through photomask-governed photolithography.
View Article and Find Full Text PDFNature
January 2025
Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
Proximity ferroelectricity is an interface-associated phenomenon in electric-field-driven polarization reversal in a non-ferroelectric polar material induced by one or more adjacent ferroelectric materials. Here we report proximity ferroelectricity in wurtzite ferroelectric heterostructures. In the present case, the non-ferroelectric layers are AlN and ZnO, whereas the ferroelectric layers are AlBN, AlScN and ZnMgO.
View Article and Find Full Text PDFNanomicro Lett
January 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
Microbatteries (MBs) are crucial to power miniaturized devices for the Internet of Things. In the evolutionary journey of MBs, fabrication technology emerges as the cornerstone, guiding the intricacies of their configuration designs, ensuring precision, and facilitating scalability for mass production. Photolithography stands out as an ideal technology, leveraging its unparalleled resolution, exceptional design flexibility, and entrenched position within the mature semiconductor industry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!