The single-photon scattering by a V-type three-level emitter in a rectangular waveguide is studied. Here the frequency value of input photons can be large beyond the single-transverse-mode region. By using Green's function formalism, the necessary and sufficient conditions of complete transmission as well as complete reflection are derived analytically. In the region of single transverse mode, the physical mechanisms of complete transmission and complete reflection are electromagnetically induced transparency (EIT) and Fano resonance, respectively. In the region of multiple transverse modes, which are induced by the finite cross section, the quantum interference between multiple scattering pathways with different transverse modes can be used to manipulate the single-photon transport. We find that the emitter becomes transparent when the superposition of waveguide modes has zero amplitude at the position of emitter. And the perfect reflection is absent even under Fano resonance unless the input-state is in a coherent superposition state. These results may promote the development of single-photon devices with wide applicable frequency region.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.404467DOI Listing

Publication Analysis

Top Keywords

single-photon scattering
8
rectangular waveguide
8
v-type three-level
8
three-level emitter
8
complete transmission
8
complete reflection
8
fano resonance
8
transverse modes
8
controlling single-photon
4
scattering rectangular
4

Similar Publications

The physical picture for photocurrent injection and coherent control in intrinsic graphene under two-color laser excitation remains obscure. Previously, photocurrent injection of intrinsic graphene was attributed to the quantum interference between two electronic transition pathways of single-photon and two-photon absorptions as well as layer-to-layer coupling. Here, we show that quantum interference between stimulated electronic Raman scattering and single-photon absorption plays a very important role in contributing to the total photocurrent, while interlayer coupling does not sufficiently affect the photocurrent injection, which is in contrast to the previous interpretation of the experimental results on photocurrent injection and coherent control.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

Herein, we report the synthesis of copillar[5]arene-based pyrene Schiff base 1 and its characterization by using 1H, 13C NMR, FT-IR and mass spectrometry. UV-vis absorption, steady-state fluorescence and time-resolved fluorescence are done to elucidate the photophysical behaviors of 1. To understand the electronic structure of 1, density functional theory (DFT) calculations are performed.

View Article and Find Full Text PDF

The oxidation kinetics of phenylalanine (Phe) by Ce(IV) have been examined in both the absence and presence of aqueous micellar media with asymmetric tails, specifically using sodium dodecyl sulfate (SDS) and sodium tetradecyl sulfate (STS) surfactants. The reaction progress was monitored by observing a decrease in absorbance using UV-vis spectroscopy. Interestingly, the kinetic profile revealed a consistent increase in the observed rate constant values as the concentration of the surfactant increased.

View Article and Find Full Text PDF

. Modeling of the collimator-detector response (CDR) in single photon emission computed tomography (SPECT) reconstruction enables improved resolution and accuracy, and is thus important for quantitative imaging applications such as dosimetry. The implementation of CDR modeling, however, can become a computational bottleneck when there are substantial components of septal penetration and scatter in the acquired data, since a direct convolution-based approach requires large 2D kernels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!