We present a near-infrared optical parametric chirped-pulse amplifier (OPCPA) and soft X-ray (SXR) high-harmonic generation system. The OPCPA produces few-cycle pulses at a center wavelength of 800 nm and operates at a high repetition rate of 100 kHz. It is seeded by fully programmable amplitude and phase controlled ultra-broadband pulses from a Ti:sapphire oscillator. The output from the OPCPA system was compressed to near-transform-limited 9.3-fs pulses. Fully characterized pulse compression was recorded for an average power of 22.5 W, demonstrating pulses with a peak power greater than 21 GW. Without full temporal characterization, high-power operation was achieved up to 35 W. We demonstrate that at such high repetition rates, spatiotemporally flattened pump pulses can be achieved through a cascaded second-harmonic generation approach with an efficiency of more than 70%. This combination provides a compelling OPCPA architecture for scaling the peak power of high-repetition-rate ultra-broadband systems in the near-infrared. The output of this 800-nm OPCPA system was used to generate SXR radiation reaching 190 eV photon energy through high-harmonic generation in helium.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.412564DOI Listing

Publication Analysis

Top Keywords

opcpa soft
8
soft x-ray
8
100 khz
8
high-harmonic generation
8
high repetition
8
opcpa system
8
peak power
8
opcpa
6
pulses
5
high-power few-cycle
4

Similar Publications

We report a compact and reliable ultrafast fiber laser system optimized for seeding a high energy, 2 μm pumped, 3 μm wavelength optical parametric chirped pulse amplification to drive soft X-ray high harmonics. The system delivers 100 MHz narrowband 2 μm pulses with >1 nJ energy, synchronized with ultra-broadband optical pulses with a ∼1 μm FWHM spectrum centered at 3 μm with 39 pJ pulse energy. The 2 μm and 3 μm pulses are derived from a single 1.

View Article and Find Full Text PDF

We present a near-infrared optical parametric chirped-pulse amplifier (OPCPA) and soft X-ray (SXR) high-harmonic generation system. The OPCPA produces few-cycle pulses at a center wavelength of 800 nm and operates at a high repetition rate of 100 kHz. It is seeded by fully programmable amplitude and phase controlled ultra-broadband pulses from a Ti:sapphire oscillator.

View Article and Find Full Text PDF

We developed a high power optical parametric chirped-pulse amplification (OPCPA) system at 2.1 µm harnessing a 500 W Yb:YAG thin disk laser as the only pump and signal generation source. The OPCPA system operates at 10 kHz with a single pulse energy of up to 2.

View Article and Find Full Text PDF

We demonstrate a novel, energy-efficient, cost-effective simple method for seeding CEP-stable OPCPAs. We couple the CEP-stable idler of a broadband OPCPA into a hollow core Kagome fiber thus compensating for the angular chirp. We obtain either relatively narrow bandwidths with ∼36% coupling efficiency or quarter-octave spanning bandwidths with ∼2.

View Article and Find Full Text PDF

We present a 100 kHz optical parametric chirped pulse amplifier (OPCPA) developed for strong-field attosecond physics and soft-x-ray transient absorption experiments. The system relies on noncollinear potassium titanyl arsenate booster OPCPAs and is pumped by a 244 W, 1.1 ps Yb:YAG Innoslab chirped pulse laser amplifier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!