We theoretically present a high-efficiency switchable reflective terahertz polarization converter composed of a periodic array of rectangular-shaped metal-dielectric-graphene sandwich structure on a dielectric substrate supported by a thick metallic film. Graphene sheet together with the rectangular-shaped metal patch provides tunable anisotropic hybrid magnetic plasmon resonance to obtain tunable phase delay of 90° and 180°, corresponding to a quarter-wave plate (QWP) and half-wave plate (HWP), respectively. Results of numerical simulations indicate that the proposed structure can switch functions between a QWP and HWP at a certain frequency simply by adjusting the Fermi energy of graphene. Both the QWP and HWP have high energy conversion efficiency, respectively 83% and 90% at 15.96THz, and high polarization conversion ratio closed to 1.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.412002DOI Listing

Publication Analysis

Top Keywords

terahertz polarization
8
quarter-wave plate
8
half-wave plate
8
qwp hwp
8
graphene-based electrically
4
electrically controlled
4
controlled terahertz
4
polarization switching
4
switching quarter-wave
4
plate
4

Similar Publications

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Nonlinear electron transport induced by polarized terahertz radiation is studied in two-dimensional tellurene at room temperature. A direct current, quadratic in the radiation's electric field, is observed. Contributions sensitive to radiation helicity and polarization orientation as well as polarization independent current are found.

View Article and Find Full Text PDF

Terahertz (THz) polarization detection facilitates the capture of multidimensional data, including intensity, phase, and polarization state, with broad applicability in high-resolution imaging, communication, and remote sensing. However, conventional semiconductor materials are limited by energy band limitations, rendering them unsuitable for THz detection. Overcoming this challenge, the realization of high-stability, room-temperature polarization-sensitive THz photodetectors (PDs) leveraging the thermoelectric effect of Cs(FAMA)Pb(IBr) (CsFAMA)/metasurfaces is presented.

View Article and Find Full Text PDF

Recent advancements in novel fiber-coupled and portable terahertz (THz) spectroscopic imaging technology have accelerated applications in nondestructive testing (NDT). Although the polarization information of THz waves can play a critical role in material characterization, there are few demonstrations of polarization-resolved THz imaging as an NDT modality due to the deficiency of such polarimetric imaging devices. In this paper, we have inspected industrial carbon fiber composites using a portable and handheld imaging scanner in which the THz polarizations of two orthogonal channels are simultaneously captured by two photoconductive antennas.

View Article and Find Full Text PDF

Spintronic terahertz metasurface emission characterized by scanning near-field nanoscopy.

Nanophotonics

April 2024

School of Electronic and Information Engineering, and School of Cyber Science and Technology, Beihang University, Beijing, China.

Understanding the ultrafast excitation, detection, transportation, and manipulation of nanoscale spin dynamics in the terahertz (THz) frequency range is critical to developing spintronic THz optoelectronic nanodevices. However, the diffraction limitation of the sub-millimeter waves - THz wavelengths - has impaired experimental investigation of spintronic THz nano-emission. Here, we present an approach to studying laser THz emission nanoscopy from W|CoFeB|Pt metasurfaces with ∼60-nm lateral spatial resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!