A long distance range over tens of kilometers is a prerequisite for a wide range of distributed fiber optic vibration sensing applications. We significantly extend the attenuation-limited distance range by making use of the multidimensionality of distributed Rayleigh backscatter data: Using the wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) technique, backscatter data is measured along the distance and optical frequency dimensions. In this work, we develop, train, and test deep convolutional neural networks (CNNs) for fast denoising of these two-dimensional backscattering results. The very compact and efficient CNN denoiser "DnOTDR" outperforms state-of-the-art image denoising algorithms for this task and enables denoising data rates of 1.2 GB/s in real time. We demonstrate that, using the CNN denoiser, the quantitative strain measurement with nm/m resolution can be conducted with up to 100 km distance without the use of backscatter-enhanced fibers or distributed Raman or Brillouin amplification.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.402789DOI Listing

Publication Analysis

Top Keywords

fiber optic
8
optic vibration
8
vibration sensing
8
convolutional neural
8
neural networks
8
distance range
8
backscatter data
8
cnn denoiser
8
long-distance fiber
4
sensing convolutional
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!