Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment.

Talanta

Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. Electronic address:

Published: March 2021

Microfluidic system with multi-functional integration of high-throughput protein/peptide separation ability has great potential for improving the identification capacity of biological samples in proteomics. In this paper, a sample treatment platform was constructed by integrating reversed phase chromatography, immobilized enzyme reactor (IMER) and imprinted monolith through a microfluidic chip to achieve the online proteins fractionation, denaturation, digestion and peptides enrichment. We firstly synthesized a poly-allyl phenoxyacetate (AP) monolith and a lysine-glycine-glycine (KGG) imprinted monolith separately, and investigated in detail their performance in fractionating proteins and extracting KGG from the protein digests of MCF-7 cell. The removal percentage of 94.6% for MCF-7 cell protein and the recovery of 90.8% for KGG were obtained. The number of proteins and peptides identified on this microfluidic platform was 2,004 and 8,797, respectively, which was 2.8-fold and 3.0-fold higher than that of untreatment sample. The time consumed by this platform for a sample treatment was about 9.6 h, less than that of conventional method (approximate 13.3 h). In addition, this platform can enrich some peptide fragments containing KGG based on imprinted monolith, which can be served for the identification of ubiquitin-modified proteomics. The successful construction of this integrated microfluidic platform provides a considerable and efficient technical tool for simultaneous identification of proteomics and post-translational modification proteomics information.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2020.121810DOI Listing

Publication Analysis

Top Keywords

microfluidic platform
12
imprinted monolith
12
fractionation denaturation
8
denaturation digestion
8
sample treatment
8
platform
6
construction microfluidic
4
platform integrating
4
integrating online
4
online protein
4

Similar Publications

Despite advances in healthcare, bacterial pathogens remain a severe global health threat, exacerbated by rising antibiotic resistance. Lower respiratory tract infections, with their high death toll, are of particular concern. Accurately replicating host-pathogen interactions in laboratory models is crucial for understanding these diseases and evaluating new therapies.

View Article and Find Full Text PDF

Three-Dimensional SERS-Active Hydrogel Microbeads Enable Highly Sensitive Homogeneous Phase Detection of Alkaline Phosphatase in Biosystems.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Alkaline phosphatase (ALP) is a biomarker for many diseases, and monitoring its activity level is important for disease diagnosis and treatment. In this study, we used the microdroplet technology combined with an laser-induced polymerization method to prepare the Ag nanoparticle (AgNP) doped hydrogel microbeads (HMBs) with adjustable pore sizes that allow small molecules to enter while blocking large molecules. The AgNPs embedded in the hydrogel microspheres can provide SERS activity, improving the SERS signal of small molecules that diffuse to the AgNPs.

View Article and Find Full Text PDF

Lab-on-paper for molecular testing with USB-powered isothermal amplification and fluidic control.

Mikrochim Acta

January 2025

Department of Biotechnology and Bioengineering, Chonnam National University, Gwangju, 61186, Republic of Korea.

The global healthcare market increasingly demands affordable molecular diagnostics for field testing. To address this need, we introduce a lab-on-paper (LOP) platform that integrates isothermal amplification with a specially designed paper strip for molecular testing through an automated microfluidics process. The LOP system is engineered for rapid, cost-effective, and highly sensitive detection, using USB-powered thermal management and a wax valve mechanism.

View Article and Find Full Text PDF

Organ-on-a-chip culture systems using human organ tissues provide invaluable preclinical insights into systemic functions . This study aimed to develop a novel human testicular tissue chip within a microfluidic device employing computer-aided design software and photolithography technology. Polydimethylsiloxane was used as the primary material to ensure marked gas permeability and no biotoxicity, enabling effective mimicry of the testicular microenvironment.

View Article and Find Full Text PDF

Simultaneous and Ultraspecific Optical Detection of Multiple miRNAs Using a Liquid Flow-Based Microfluidic Assay.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, Yeungnam University, 280 Daehak-ro, Gyeongsan-si, Gyeongsangbuk-do 38541, Republic of Korea.

Recent studies have reported that the cause and progression of many diseases are closely related to complex and diverse gene regulation involving multiple microRNAs (miRNAs). However, most existing methods for miRNA detection typically deal with one sample at a time, which limits the achievement of high diagnostic accuracy for diseases associated with multiple gene dysregulations. Herein, we develop a liquid flow-based microfluidic optical assay for the simple and reliable detection of two different target miRNAs simultaneously at room temperature without any enzymatic reactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!