Study of performance criteria of serial configuration of two chemostats.

Math Biosci Eng

ITAP, Univ Montpellier, INRAE, Institut Agro, Montpellier, France.

Published: September 2020

This paper deals with thorough analysis of serial configurations of two chemostats. We establish an in-depth mathematical study of all possible steady states, and we compare the performances of the two serial interconnected chemostats with the performances of a single one. The comparison is evaluated under three different criteria. We analyze, at steady state, the minimization of the output substrate concentration, the productivity of the biomass and the biogas flow rate. We determine specific conditions, which depend on the biological parameters, the operating parameters of the model and the distribution of the total volume. These necessary and sufficient conditions provide the most efficient serial configuration of two chemostats versus one. Complementarily, this mainly helps to discern when it is not advisable to use the serial configuration instead of a simple chemostat, depending on: the considered criterion, the operating parameters fixed by the operator and the distribution of the volumes into the two tanks.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2020332DOI Listing

Publication Analysis

Top Keywords

serial configuration
12
configuration chemostats
8
operating parameters
8
serial
5
study performance
4
performance criteria
4
criteria serial
4
chemostats
4
chemostats paper
4
paper deals
4

Similar Publications

Comparison of the Performance of Nonlinear Time-Dependent Constitutive Models Calibrated with Minimal Test Data Applied to an Epoxy Resin.

Materials (Basel)

January 2025

CITAB-Centre for the Research and Technology of Agro-Environmental and Biological Sciences, School of Science and Technology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal.

Epoxy resins are extensively employed as adhesives and matrices in fibre-reinforced composites. As polymers, they possess a viscoelastic nature and are prone to creep and stress relaxation even at room temperature. This phenomenon is also responsible for time-dependent failure or creep fracture due to cumulative strain.

View Article and Find Full Text PDF

Wind energy assessment and hybrid micro-grid optimization for selected regions of Saudi Arabia.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

This study investigates the optimization of wind energy integration in hybrid micro grids (MGs) to address the rising demand for renewable energy, particularly in regions with limited wind potential. A comprehensive assessment of wind energy potential was conducted, and optimal sizing of standalone MGs incorporating photovoltaic (PV) systems, wind turbines (WT), and battery storage (BS) systems was performed for six regions in the Kingdom Saudi Arabia. Wind resource analysis utilizing the Weibull distribution function shows that all regions exhibited Class 1 wind energy characteristics, with average annual wind power densities ranging from 36.

View Article and Find Full Text PDF

A Review of Cascaded Metasurfaces for Advanced Integrated Devices.

Micromachines (Basel)

December 2024

State Key Laboratory of Precision Measuring Technology & Instruments, Tianjin University, Tianjin 300072, China.

This paper reviews the field of cascaded metasurfaces, which are advanced optical devices formed by stacking or serially arranging multiple metasurface layers. These structures leverage near-field and far-field electromagnetic (EM) coupling mechanisms to enhance functionalities beyond single-layer metasurfaces. This review comprehensively discusses the physical principles, design methodologies, and applications of cascaded metasurfaces, focusing on both static and dynamic configurations.

View Article and Find Full Text PDF

Dynamic PK/PD Infection Models for the Development and Optimisation of Antimicrobial Regimens: A Narrative Review.

Antibiotics (Basel)

December 2024

Centre for Clinical Research (UQCCR), Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.

The antimicrobial concentration-time profile in humans affects antimicrobial activity, and as such, it is critical for preclinical infection models to simulate human-like dynamic concentration-time profiles for maximal translatability. This review discusses the setup, principle, and application of various dynamic PK/PD infection models commonly used in the development and optimisation of antimicrobial treatment regimens. It covers the commonly used dynamic infection models, including the one-compartment model, hollow fibre infection model, biofilm model, bladder infection model, and aspergillus infection model.

View Article and Find Full Text PDF

X-ray crystallography is one of the leading tools to analyze the 3-D structure, and therefore, function of proteins and other biological macromolecules. Traditional methods of mounting individual crystals for X-ray diffraction analysis can be tedious and result in damage to fragile protein crystals. Furthermore, the advent of multi-crystal and serial crystallography methods explicitly require the mounting of larger numbers of crystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!