Background: The skills required for supermicrosurgery are hard-earned and difficult to master. The University of Wisconsin "blue-blood" chicken thigh model incorporates perfusion of the thigh vessels with a blue liquid solution, allowing users to visualize flow across their anastomoses. This model has proven to be an excellent source of small vessels (down to 0.3 mm) but assessing the quality of anastomoses at this spatial scale has proven difficult. We evaluated whether fluorescent imaging with indocyanine green (ICG) in this realistic training model would enhance the assessment of supermicrosurgical anastomoses, and therefore improve real-time feedback to trainees.
Methods: Anastomoses of vessels ranging from 0.35 to 0.55mm in diameter were performed followed by the capture of white light with and without fluorescence imaging overlay during infusion of "blue-blood" and ICG. Videos were randomized and shown to seven fellowship-trained microsurgeons at the University of Wisconsin-Madison who rated each anastomosis as "patent," "not patent," or "unsure." Surgeon accuracy, uncertainty, and inter-rater agreement were measured for each imaging modality.
Results: Use of fluorescence significantly increased surgeon accuracy to 91% compared with 47% with white light alone ( = 0.015), decreased surgeon uncertainty to 4% compared with 41% with white light alone ( = 0.011), and improved inter-rater agreement from 53.1% with white light alone to 91.8% ( = 0.016).
Conclusion: Augmentation of the University of Wisconsin "blue-blood" chicken thigh model with ICG fluorescence improves accuracy, decreases uncertainty, and improves inter-rater agreement when assessing supermicrosurgical anastomoses in a training setting. This improved, real-time feedback enhances this model's value as a supermicrosurgical training tool.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334472 | PMC |
http://dx.doi.org/10.1055/s-0040-1722184 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
The Johns Hopkins University, Department of Biomedical Engineering, Baltimore, Maryland, United States.
Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.
View Article and Find Full Text PDFVoid spot assay (VSA) noninvasively evaluates urination. VSA is often not performed in rats due to difficulty analyzing larger papers compared with mouse. This study optimizes VSA for rats by comparing post-assay visualization techniques: bright field light (BF), ultraviolet light (UV), and ninhydrin spray (N).
View Article and Find Full Text PDFZookeys
January 2025
Steinhart Aquarium, California Academy of Sciences, San Francisco, CA 94118, USA.
Herein, we describe a new species of perchlet found at depths of 100-125 meters in mesophotic coral ecosystems of the Maldives in the Indian Ocean. is unique in both morphology and coloration. The following combination of characters distinguishes it from all known congeners: dorsal fin X, 15; anal-fin rays III, 7; pectoral-fin rays 13 | 13 (13 | 12), all unbranched; principal caudal-fin rays 9 + 8; lateral line complete with 30-32 tubed scales; gill rakers 5 + 12; circumpeduncular scales 11-12; and absence of antrorse or retrorse spines on ventral margin of preopercle.
View Article and Find Full Text PDFACS Cent Sci
January 2025
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.
Photothermal conversion can promote plastic depolymerization (chemical recycling to a monomer) through light-to-heat conversion. The highly localized temperature gradient near the photothermal agent surface allows selective heating with spatial control not observed with bulk pyrolysis. However, identifying and incorporating practical photothermal agents into plastics for end-of-life depolymerization have not been realized.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!