C9orf72 ALS/FTD patients show remarkable clinical heterogeneity, but the complex biology of the repeat expansion mutation has limited our understanding of the disease. BAC transgenic mice were used to better understand the molecular mechanisms and repeat length effects of C9orf72 ALS/FTD. Genetic analyses of these mice demonstrate that the BAC transgene and not integration site effects cause ALS/FTD phenotypes. Transcriptomic changes in cell proliferation, inflammation and neuronal pathways are found late in disease and alternative splicing changes provide early molecular markers that worsen with disease progression. Isogenic sublines of mice with 800, 500 or 50 G4C2 repeats generated from the single-copy C9-500 line show longer repeats result in earlier onset, increased disease penetrance and increased levels of RNA foci and dipeptide RAN protein aggregates. These data demonstrate G4C2 repeat length is an important driver of disease and identify alternative splicing changes as early biomarkers of C9orf72 ALS/FTD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906756PMC
http://dx.doi.org/10.1093/hmg/ddaa279DOI Listing

Publication Analysis

Top Keywords

c9orf72 als/ftd
16
repeat length
12
disease penetrance
8
bac transgenic
8
transgenic mice
8
alternative splicing
8
splicing changes
8
disease
6
als/ftd
5
repeat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!