A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Magnetoelastic coupling and spin contributions to entropy and thermal transport in biferroic yttrium orthochromite. | LitMetric

Direct engineering of material properties through exploitation of spin, phonon, and charge-coupled degrees of freedom is an active area of development in materials science. However, the relative contribution of the competing orders to controlling the desired behavior is challenging to decipher. In particular, the independent role of phonons, magnons, and electrons, quasiparticle coupling, and relative contributions to the phase transition free energy largely remain unexplored, especially for magnetic phase transitions. Here, we study the lattice and magnetic dynamics of biferroic yttrium orthochromite using Raman, infrared, and inelastic neutron spectroscopy techniques, supporting our experimental results with first-principles lattice dynamics and spin-wave simulations across the antiferromagnetic transition at∼ 138 K. Spectroscopy data and simulations together with the heat capacity () measurements, allow us to quantify individual entropic contributions from phonons (0.01 ± 0.01atom), dilational (0.03 ± 0.01atom), and magnons (0.11 ± 0.01atom) across. High-resolution phonon measurements conducted in a magnetic field show that anomalous-dependence of phonon energies acrossoriginates from magnetoelastic coupling. Phonon scattering is primarily governed by the phonon-phonon coupling, with little contribution from magnon-phonon coupling, short-range spin correlations, or magnetostriction effects; a conclusion further supported by our thermal conductivity measurements conducted up to 14 T, and phenomenological modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/abd781DOI Listing

Publication Analysis

Top Keywords

magnetoelastic coupling
8
biferroic yttrium
8
yttrium orthochromite
8
measurements conducted
8
coupling spin
4
spin contributions
4
contributions entropy
4
entropy thermal
4
thermal transport
4
transport biferroic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!