Background And Objectives: Eye diseases have a high socioeconomic impact on society and may be one of the fields in which most stem cell-related scientific accomplishments have been achieved recently. In this context, human Pluripotent Stem Cell (hPSC) technology arises as an important tool to produce and study human Embryonic Stem cell derived-Retinal Pigmented Epithelial Cells (hES-RPE) for several applications, such as cell therapy, disease modeling, and drug screening. The use of this technology in pre-clinical phases attends to the overall population desire for animal-free product development. Here, we aimed to compare hES-RPE cells with ARPE-19, one of the most commonly used retinal pigmented epithelial immortalized cell lines.
Methods And Results: Functional, cellular and molecular data obtained suggest that hES-RPE cells more closely resembles native RPEs compared to ARPE-19. Furthermore, hES-RPE revealed an interesting robustness when cultured on human Bruch's membrane explants and after exposure to Cyclosporine (CSA), Sirolimus (SRL), Tacrolimus (TAC), Leflunomide (LEF) and Teriflunomide (TER). On these conditions, hES-RPE cells were able to survive at higher drug concentrations, while ARPE-19 cell line was more susceptible to cell death.
Conclusions: Therefore, hES-RPEs seem to have the ability to incur a broader range of RPE functions than ARPE-19 and should be more thoroughly explored for drug screening.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7904525 | PMC |
http://dx.doi.org/10.15283/ijsc20094 | DOI Listing |
The opioid crisis has been an issue in the United States since the mid-1990s, claiming numerous lives and presenting a significant challenge to health care clinicians. Various preoperative, intraoperative, and postoperative strategies aimed at reducing opioid consumption can be used by orthopaedic surgeons to help minimize this crisis. Preoperative screening tools can help identify patients at risk for prolonged opioid use, allowing for tailored interventions and counseling.
View Article and Find Full Text PDFArch Microbiol
January 2025
SLIIT, Malabe, Sri Lanka.
The development of new medicines with unique methods of antimicrobial action is desperately needed due to the emerging multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus. Therefore, antimicrobial peptoids have emerged as potential new antimicrobials. Thirteen peptoid analogues have been designed and synthesized via solid phase synthesis.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
is an obligate anaerobic, Gram-positive bacterium that produces toxins. Despite technological progress, conducting gene expression analysis of under different conditions continues to be labor-intensive. Therefore, there is a demand for simplified tools to investigate the transcriptional and translational regulation of .
View Article and Find Full Text PDFJ Virol
December 2024
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
Emerging tick-borne orthonairovirus infections pose a growing global concern, with limited understanding of the viral ovarian tumor-like cysteine proteases (vOTUs) encoded by novel orthonairoviruses. These vOTUs, a group of deubiquinylases (DUBs), disrupt the innate immune response. Yezo virus (YEZV), a recently discovered pathogenic orthonairovirus, was first reported in Japan in 2021.
View Article and Find Full Text PDFOrg Lett
January 2025
CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Spirochrains A-D, four undescribed spirocyclic amides, were obtained from an Antarctic fungus, SCSIO 05702. Their structures were elucidated through spectroscopic analysis and quantum calculations. Spirochrains A-D possess a rarely reported cage-like 5/6/5 fused spirocyclic amide scaffold.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!