PIK3CA is the most frequently mutated oncogene in cervical cancer, and somatic mutations in the PIK3CA gene result in increased activity of PI3K. In cervical cancer, the E545K mutation in PIK3CA leads to elevated cell proliferation and reduced apoptosis. In the present study, we designed and synthesized a novel pyrrole-imidazole polyamide-seco-CBI conjugate, P3AE5K, to target the PIK3CA gene bearing the E545K mutation, rendered possible by nuclear access and the unique sequence specificity of pyrrole-imidazole polyamides. P3AE5K interacted with double-stranded DNA of the coding region containing the E545K mutation. When compared with conventional PI3K inhibitors, P3AE5K demonstrated strong cytotoxicity in E545K-positive cervical cancer cells at lower concentrations. PIK3CA mutant cells exposed to P3AE5K exhibited reduced expression levels of PIK3CA mRNA and protein, and subsequent apoptotic cell death. Moreover, P3AE5K significantly decreased the tumor growth in mouse xenograft models derived from PIK3CA mutant cells. Overall, the present data strongly suggest that the alkylating pyrrole-imidazole polyamide P3AE5K should be a promising new drug candidate targeting a constitutively activating mutation of PIK3CA in cervical cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7935806PMC
http://dx.doi.org/10.1111/cas.14785DOI Listing

Publication Analysis

Top Keywords

cervical cancer
20
pik3ca gene
12
e545k mutation
12
pik3ca
9
pyrrole-imidazole polyamide
8
mutation pik3ca
8
pik3ca mutant
8
mutant cells
8
p3ae5k
6
cervical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!