This protocol describes an integrated approach for analyzing site-specific N- and O-linked glycosylation of SARS-CoV-2 spike protein by mass spectrometry. Glycoproteomics analyzes intact glycopeptides to examine site-specific microheterogeneity of glycoproteins. Glycomics provides structural characterization on any glycan assignments by glycoproteomics. This procedure can be modified and applied to a variety of N- and/or O-linked glycoproteins. Combined with bioinformatics, the glycomics-informed glycoproteomics may be useful in generating 3D molecular dynamics simulations of certain glycoproteins alone or interacting with one another. For complete details on the use and execution of this protocol, please refer to Zhao et al. (2020).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757665 | PMC |
http://dx.doi.org/10.1016/j.xpro.2020.100214 | DOI Listing |
Int J Mol Sci
December 2024
Digital Omics Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea.
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development.
View Article and Find Full Text PDFVirology
December 2024
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Departamento de Biotecnología y Bioingeniería, Av. Instituto Politécnico Nacional 2508, Mexico City, 07360, Mexico; CINVESTAV, Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Mexico. Electronic address:
COVID-19 infections continue due to accessibility barriers to vaccines and the emergence of SARS-CoV-2 variants. An effective, safe, accessible, and broad-spectrum vaccine is still needed to control the disease. We developed a multivalent protein subunit vaccine comprising antigens designed from a non-N-glycosylated region of the receptor-binding domain of the spike protein of SARS-CoV-2.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
The JN.1-sublineage KP.3.
View Article and Find Full Text PDFBMC Genom Data
December 2024
School of Science, Constructor University, 28759, Bremen, Germany.
Objectives: SARS-CoV-2 spike (S) glycoprotein furin cleavage site is a key determinant of SARS-CoV-2 virulence and COVID-19 pathogencity. Located at the S1/S2 junction, it is unique among sarbecoviruses but frequently found among betacoronaviruses. Recent evidence suggests that this site includes two additional functional motifs: a pat7 nuclear localization signal and two flanking O-glycosites.
View Article and Find Full Text PDFJ Adv Res
December 2024
Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an 710069, China. Electronic address:
Introduction: The binding of the spike (S) protein of SARS-CoV-2 to angiotensin-converting enzyme 2 (ACE2) is a critical stage in the process of infection. While previous studies indicated that the S protein and ACE2 are extensively glycosylated, the functions of glycans in their interactions remain uncertain.
Objectives: This study aimed to investigate the glycan receptors of SARS-CoV-2 and evaluate the inhibitory effects of galactosylated glycoproteins derived from bovine milk on the attachment of SARS-CoV-2 pseudovirus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!