Organoid Sample Preparation and Extraction for LC-MS Peptidomics.

STAR Protoc

Wellcome Trust - MRC Institute of Metabolic Science Metabolic Research Laboratories, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, UK.

Published: December 2020

This protocol describes the peptidomic analysis of organoid lysates, FACS-purified cell populations, and 2D culture secretions by liquid chromatography mass spectrometry (LC-MS). Currently, most peptides are quantified by ELISA, limiting the peptides that can be studied. However, an LC-MS-based approach allows more peptides to be monitored. Our group has previously used LC-MS for tissue peptidomics and secretion of enteroendocrine peptides from primary culture. Now, we extend the use to organoid models. For complete details on the use and execution of this protocol, please refer to Goldspink et al. (2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757358PMC
http://dx.doi.org/10.1016/j.xpro.2020.100164DOI Listing

Publication Analysis

Top Keywords

organoid sample
4
sample preparation
4
preparation extraction
4
extraction lc-ms
4
lc-ms peptidomics
4
peptidomics protocol
4
protocol describes
4
describes peptidomic
4
peptidomic analysis
4
analysis organoid
4

Similar Publications

Matrix-free human 2D organoids recapitulate duodenal barrier and transport properties.

BMC Biol

January 2025

Department of General and Visceral Surgery, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Article Synopsis
  • Traditional cell line monolayers have been the standard for studying epithelial barrier and transport, but 3D intestinal organoids are emerging as a better model for studying these functions.
  • Researchers developed human duodenum-derived organoid monolayers that don't require a gelatinous matrix for anchorage, which could hinder diffusion.
  • The new organoid monolayers effectively replicate the duodenum’s functions and composition, showing improved models for studying transport mechanisms without relying on animal-derived materials.
View Article and Find Full Text PDF

Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Cell Rep

December 2024

School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.

View Article and Find Full Text PDF

Background: Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer death worldwide. Although immune checkpoint inhibitors (ICIs) have shown remarkable clinical efficacy, they can also induce a paradoxical cancer acceleration, known as hyperprogressive disease (HPD), whose causative mechanisms are still unclear.

Methods: This study investigated the mechanisms of ICI resistance in an HPD-NSCLC model.

View Article and Find Full Text PDF
Article Synopsis
  • Histology is crucial for examining tissue structure and cell details, but standard methods for cryosectioning small tissues like organoids lack efficiency and cost-effectiveness, hindering analysis.
  • The adapted HistoBrick method uses an optimal embedding mixture of 8% PEGDA and 2.5% gelatine, providing support for fragile samples during cryosectioning and preserving delicate structures of human retinal organoids.
  • Using these PEGDA-gelatine HistoBricks, researchers monitored retinal organoid development over time, finding that photoreceptor cell bodies were sustained for up to 98 weeks, although outer segments diminished, making this approach valuable for increased throughput in tissue studies and research.
View Article and Find Full Text PDF

Development of a rat airway organoids model for studying chronic obstructive pulmonary disease.

Tissue Cell

December 2024

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, China; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, China. Electronic address:

Chronic obstructive pulmonary disease (COPD) poses global health challenges owing to limited treatment options and high rates of morbidity and mortality. Airway organoids have recently become a valuable resource for the investigation of respiratory diseases. However, limited access to clinical tissue samples hinders the use of airway organoids to study COPD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!