Nonrandom DNA Segregation Detection under Replication Stress.

STAR Protoc

Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang 310009, China.

Published: December 2020

Nonrandom DNA segregation (NDS) is a mitotic event in which sister chromatids carrying the old (parent) DNA strands are distributed exclusively to one of the two daughter cells. Although this phenomenon occurs in multiple organisms, the low frequency poses an obstacle to observation. Here, we present an improved protocol to induce NDS under replication stress. This protocol can be modified to accommodate various cell lines. For complete details on the use and execution of this protocol, please refer to Xing et al. (2020).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757299PMC
http://dx.doi.org/10.1016/j.xpro.2020.100143DOI Listing

Publication Analysis

Top Keywords

nonrandom dna
8
dna segregation
8
replication stress
8
segregation detection
4
detection replication
4
stress nonrandom
4
segregation nds
4
nds mitotic
4
mitotic event
4
event sister
4

Similar Publications

Biochemical and evolutionary interactions between mitochondrial and nuclear genomes ('mitonuclear interactions') are proposed to underpin fundamental aspects of biology including evolution of sexual reproduction, adaptation and speciation. We investigated the role of pre-mating isolation in maintaining functional mitonuclear interactions in wild populations bearing diverged, putatively co-adapted mitonuclear genotypes. Two lineages of eastern yellow robin Eopsaltria australis-putatively climate-adapted to 'inland' and 'coastal' climates-differ by ~7% of mitogenome nucleotides, whereas nuclear genome differences are concentrated into a sex-linked region enriched with mitochondrial functions.

View Article and Find Full Text PDF

Objectives: The number of mosquito bites a person receives determines the risk of acquiring malaria and the likelihood of transmitting infections to mosquitoes. We assessed heterogeneity in biting and associated factors in two settings in Uganda with different endemicity.

Methods: parasites in blood-fed indoor caught mosquitoes were quantified using qPCR targeting the Pf18S rRNA gene.

View Article and Find Full Text PDF

The 2-micron plasmid residing within the host budding yeast Saccharomyces cerevisiae nucleus serves as a model system for understanding the mechanism of segregation and stable maintenance of circular endogenously present extrachromosomal DNA in eukaryotic cells. The plasmid is maintained at a high average copy number (40-60 copies per yeast cell) through generations despite there is no apparent benefit to the host. Notably, the segregation mechanism of 2-micron plasmid shares significant similarities with those of bacterial low-copy-number plasmids and episomal forms of viral genomes in mammalian cells.

View Article and Find Full Text PDF

Background: Disturbances in the intricate processes that control craniofacial morphogenesis can result in birth defects, most common of which are orofacial clefts (OFCs). Nonsyndromic cleft lip (nsCL), one of the phenotypic forms amongst OFCs, has a non-random laterality presentation with the left side being affected twice as often compared to the right side. This study investigates the etiology of nsCL and the factors contributing to its laterality using a pair of monozygotic twins with mirror-image cleft lip.

View Article and Find Full Text PDF

Horizontal gene transfer is one of the most important drivers of bacterial evolution. Transformation by uptake of extracellular DNA is traditionally not considered to be an effective mode of gene acquisition, simply because extracellular DNA is degraded in a matter of days when it is suspended in e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!