AI Article Synopsis

  • The scansoriopterygid theropods had elongated fingers with skin that could form a potential wing, hypothesized for flying, but this idea had not been tested.
  • Using advanced imaging techniques, the study found that these creatures were likely tree-dwellers with limited ability for powered flight and gliding.
  • The research indicates that scansoriopterygids do not represent the early evolution of bird flight and highlight a complex evolutionary process for flight in the Jurassic period.

Article Abstract

The bizarre scansoriopterygid theropods and had skin stretched between elongate fingers that form a potential membranous wing. This wing is thought to have been used in aerial locomotion, but this has never been tested. Using laser-stimulated fluorescence imaging, we re-evaluate their anatomy and perform aerodynamic calculations covering flight potential, other wing-based behaviors, and gliding capabilities. We find that and were likely arboreal, highly unlikely to have any form of powered flight, and had significant deficiencies in flapping-based locomotion and limited gliding abilities. Our results show that Scansoriopterygidae are not models for the early evolution of bird flight, and their structurally distinct wings differed greatly from contemporaneous paravians, supporting multiple independent origins of flight. We propose that Scansoriopterygidae represents a unique but failed flight architecture of non-avialan theropods and that the evolutionary race to capture vertebrate aerial morphospace in the Middle to Late Jurassic was dynamic and complex.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756141PMC
http://dx.doi.org/10.1016/j.isci.2020.101574DOI Listing

Publication Analysis

Top Keywords

flight
5
aerodynamics membrane-winged
4
membrane-winged theropods
4
theropods poor
4
poor gliding
4
gliding dead-end
4
dead-end bizarre
4
bizarre scansoriopterygid
4
scansoriopterygid theropods
4
theropods skin
4

Similar Publications

Fugitive or diffuse methane emissions constitute an important source of damage to the environment, much greater even than CO2 both over a time span of 20 years and over a longer time span of 100. It is therefore of preeminent importance to undertake all the efforts necessary to implement new tools, protocols, and methods that contribute to the identification and measurement of these emissions to implement site-specific actions of mitigation, repair, and conscious management of the emitting plants. Among the remote sensing and leak detection technologies currently used, the tunable diode laser absorption spectroscopy (TDLAS) method plays a relevant role.

View Article and Find Full Text PDF

Wildfires at the wildland-urban interface (WUI) have been increasing in frequency over recent decades due to increased human development and shifting climatic patterns. The work presented here focuses on the impacts of a WUI fire on indoor air using field measurements of volatile organic compounds (VOCs) by Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). We found a slow decrease in VOC mixing ratios over the course of roughly 5 weeks starting 10 days after the fire, and those levels decreased to ∼20% of the initial indoor value on average.

View Article and Find Full Text PDF

Environmental influence and species occurrence of yellowjacket drones in an invaded area.

Sci Rep

January 2025

Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche (IFAB) (CONICET - INTA), Modesta Victoria N°4450, San Carlos de Bariloche, Río Negro, 8400, Argentina.

During the mating season, reproductive individuals of numerous insect species gather in rendezvous areas, which increases mating opportunities. Male hymenopterans often have to move considerable distances during a particular season, searching or waiting for receptive females. Such behavior is likely driven by a complex combination of individual and species-specific traits, environmental influence, and landscape cues.

View Article and Find Full Text PDF

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

Airborne observations reveal the fate of the methane from the Nord Stream pipelines.

Nat Commun

January 2025

Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany.

The Nord Stream pipeline leaks on 26 September 2022 released 465 ± 20 kt of methane into the atmosphere, which is the largest recorded transient anthropogenic methane emission event. While most of the gas escaped directly to the atmosphere, a fraction dissolved in the water. So far, studies on the fate of this dissolved methane rely on pipeline volumetric estimates or spatially sparse concentration measurements and ocean models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!