MicroRNAs (miRNAs) play crucial regulatory roles as post-transcriptional regulators for gene expression and serve as promising biomarkers for diagnosis and prognosis of diseases. Herein, a dual-signal amplification method has been developed for sensitive and selective detection of miRNA based on rolling circle amplification (RCA) and enzymatic repairing amplification (ERA) with low nonspecific background. This strategy designs a padlock probe that can be cyclized in the presence of target miRNA to initiate the RCA reaction, after which the TaqMan probes that are complementary to the RCA products can be cyclically cleaved to produce obvious fluorescence signals with the help of endonuclease IV (Endo IV). Attributed to the dual-signal amplification procedure and the high fidelity of Endo IV, the RCA-ERA method allows quantitative detection of miR-21 in a dynamic range from 2 pM to 5 nM with a low background signal. Moreover, it has the ability to discriminate single-base difference between miRNAs and shows good performance for miRNA detection in complex biological samples. The results demonstrate that the RCA-ERA assay holds a great promise for miRNA-based diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758957 | PMC |
http://dx.doi.org/10.1021/acsomega.0c05141 | DOI Listing |
Anal Chim Acta
February 2025
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:
Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, PR China. Electronic address:
Background: Traditional lateral flow biosensors (LFBs), which utilize colorimetric signals as output, possess the virtues of simplicity and rapidity. However, it also suffers from insufficient sensitivity and limited reliability. It is well known that the results of LFBs can be false positive, and it is difficult to perform accurate quantification under low-abundance targets.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
() is a major pathogenic bacterium responsible for bacterial foodborne diseases, making its rapid, specific, and accurate detection crucial. In this study, we develop a ratiometric biosensor based on the recombinase polymerase amplification-clustered regularly interspaced short palindromic repeats/CRISPR associated protein 12a (RPA-CRISPR/Cas12a) system and Eu-metal-organic framework (Eu-MOF) fluorescent nanomaterials for the high-sensitivity detection of , combining with RPA for efficient isothermal amplification, this sensor enhances specificity and sensitivity by utilizing the target activation of CRISPR/Cas12a. The Eu-MOF serves a dual function, providing stable red fluorescence as a reference signal and adsorbing FAM-labeled probes for fluorescence quenching, forming a dual-signal system that significantly reduces background interference.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, School of Medicine, Linyi University, Linyi, China. Electronic address:
MicroRNA (miRNA) serves as an effective and viable biomarker for early diagnosis and monitoring of cancer disorders. It is highly expressed in tumor cells, including lung cancer, liver cancer and lymphoma. Herein, we propose a ratiometric electrochemical sensor for ultrasensitive detection of miRNA-21 using dual signal amplification, hybridization chain reaction and Exo III assisted-amplification.
View Article and Find Full Text PDFTalanta
January 2025
Institute of Quality Standard and Testing Technology of BAAFS, Beijing 100097, China. Electronic address:
Alternariol (AOH) has attracted much attention as an emerging toxin in edible herbs that can pose potential carcinogenic risks to human. However, the rapid detection of AOH to ensure food safety remains a challenge. Here, a CRISPR-Cas12a-mediated aptamer-based sensor (aptasensor) was proposed for the sensitive quantification of AOH by using a personal glucose meter.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!