Diabetes mellitus (DM) is a chronic metabolic disease, the third killer of mankind. The finding of potent drugs against diabetes remains challenging. In the present study, coumarin derivatives with known biological activity against diabetic protein have been used to predict functional groups' positions on coumarin derivatives. α-Glucosidase is a brush border membrane-bound lysosomal enzyme from the hydrolase enzyme family. It plays an important role in the metabolism of glycoproteins. Inhibitors of lysosomal α-glucosidase can reduce postprandial hyperglycemia. Due to this, lysosomal α-glucosidase is a good therapeutic target for drugs. A total of 116 coumarin derivatives with IC50 values against lysosomal α-glucosidase were selected for a CADD (computer-aided drug design) approach to identify more potent drugs. Pharmacophore modeling and atom-based 3-QSAR of 116 active compounds against lysosomal α-glucosidase were performed and identified positions and types of groups to increase activity. We performed molecular docking of 116 coumarin derivatives against the lysosomal α-glucosidase enzyme, and three compounds (isorutarine, 10_, and 36) resulted in a docking score of -7.64, -7.12, and -6.86 kcal/mol. The molecular dynamics simulation of the above three molecules and protein complex performed for 100 ns supported the interaction stability of isorutarine, 10_, and 36 with the lysosomal binding site α-glucosidase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758891PMC
http://dx.doi.org/10.1021/acsomega.0c03871DOI Listing

Publication Analysis

Top Keywords

lysosomal α-glucosidase
20
coumarin derivatives
16
α-glucosidase
8
diabetes mellitus
8
molecular dynamics
8
dynamics simulation
8
potent drugs
8
116 coumarin
8
isorutarine 10_
8
lysosomal
7

Similar Publications

Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.

View Article and Find Full Text PDF

S100P is a ferroptosis suppressor to facilitate hepatocellular carcinoma development by rewiring lipid metabolism.

Nat Commun

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.

Ferroptosis is a newly identified programmed cell death induced by iron-driven lipid peroxidation and implicated as a potential approach for tumor treatment. However, emerging evidence indicates that hepatocellular carcinoma (HCC) cells are generally resistant to ferroptosis and the underlying molecular mechanism is poorly understood. Here, our study confirms that S100 calcium binding protein P (S100P), which is significantly up-regulated in ferroptosis-resistant HCC cells, efficiently inhibits ferroptosis.

View Article and Find Full Text PDF

ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.

View Article and Find Full Text PDF

The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and AMPA-receptor (AMPAR) imaging on mice and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to re-sensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits.

View Article and Find Full Text PDF

Engineered cell membrane vesicles loaded with lysosomophilic drug for acute myeloid leukemia therapy via organ-cell-organelle cascade-targeting.

Biomaterials

January 2025

Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China. Electronic address:

Acute myeloid leukemia (AML) presents significant treatment challenges due to the severe toxicities and limited efficacy of conventional therapies, highlighting the urgency for innovative approaches. Organelle-targeting therapies offer a promising avenue to enhance therapeutic outcomes while minimizing adverse effects. Herein, inspired that primary AML cells are enriched with lysosomes and sensitive to lysosomophilic drugs (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!