Communication between maternal uterus and blastocyst occurs in the early stages of pregnancy, and the interaction influences the success of embryo implantation. Whereas small extracellular vesicles (sEVs) play an essential role in mediating intercellular communication in numerous biological processes, their role in embryo implantation during the window of implantation (WOI) remains poorly defined. Here, we report that endometrial epithelial cells (EECs) secrete sEVs during early pregnancy, which affects the trophoblast behaviors (migration, invasion, and proliferation), thus influencing embryo implantation. We show that microRNA (miR)-100-5p, sEVs containing microRNA (miRNA), activates both focal adhesion kinase (FAK) and c-Jun N-terminal kinase (JNK), as well as contributes to trophoblast migration and invasion. Furthermore, our findings indicate that the sEV miR-100-5p promotes angiogenesis during the implantation process. In conclusion, this study reveals a novel mechanism by which EEC-derived sEV miR-100-5p crosstalks with trophoblasts, leading to an enhanced ability for implantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758458PMC
http://dx.doi.org/10.1016/j.omtn.2020.10.043DOI Listing

Publication Analysis

Top Keywords

embryo implantation
16
small extracellular
8
mir-100-5p promotes
8
migration invasion
8
sev mir-100-5p
8
implantation
7
endometrial cell-derived
4
cell-derived small
4
extracellular vesicle
4
mir-100-5p
4

Similar Publications

Uterine infections reduce ruminant reproductive efficiency. Reproductive dysfunction caused by infusion of Gram-negative bacteria is characterized by the failure of embryo implantation and reduced conception rates. Lipopolysaccharide (LPS), a major component of the outer membrane of Gram-negative bacteria, is highly abortogenic.

View Article and Find Full Text PDF

The placenta is a vital organ that supports fetal development by mediating nutrient and gas exchange, regulating immune tolerance, and maintaining hormonal balance. Its formation and function are tightly linked to the processes of embryo implantation and the establishment of a robust placental-uterine interface. Recent advances in molecular biology and histopathology have shed light on the key regulatory factors governing these processes, including trophoblast invasion, spiral artery remodeling, and the development of chorionic villi.

View Article and Find Full Text PDF

Prenatal Ultrasound Findings and Chromosomal Outcomes of Pregnancies with Mosaic Embryo Transfer.

Diagnostics (Basel)

December 2024

Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06125, Republic of Korea.

Background: To investigate prenatal ultrasound findings and the chromosomal outcomes of mosaic embryo transfer.

Methods: This retrospective study was conducted on pregnant women who underwent mosaic embryo transfer following blastocyst-stage preimplantation genetic testing for aneuploidy (PGT-A) at CHA Gangnam Medical Center from January 2021 to July 2024. Trophectoderm biopsy specimens were collected using standard protocols, and next-generation sequencing profiles were defined as mosaics when displaying copy number counts in the 20-80% range.

View Article and Find Full Text PDF

Unlabelled: In vitro fertilization (IVF) is a widely used assisted reproductive technology to achieve a successful pregnancy. However, the acquisition of oxidative stress in embryo in vitro culture impairs its competence. Here, we demonstrated that a nuclear coding gene, methyltransferase- like protein 7A (METTL7A), improves the developmental potential of bovine embryos.

View Article and Find Full Text PDF

Mouse embryonic stem cells (mESCs) and other naïve pluripotent stem cells can reverse typical developmental trajectories and, at low frequency, de-differentiate into 2-cell-like cells (2CLCs) that resemble the mammalian embryo during zygotic genome activation (ZGA). This affords the opportunity to reveal molecular principles that govern the pre-implantation stages of mammalian development. We leveraged a multipurpose allele for acute protein depletion and efficient immunoprecipitation to dissect the molecular functions of the chromatin repressor EHMT2, a candidate antagonist of the mESC-to-2CLC transition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!