Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Myocardial ischemia-reperfusion injury (MIRI) has been confirmed to induce endoplasmic reticulum stress (ERS) during downstream cascade reactions after the sufficient deterioration of cardiomyocyte function. However, clinically outcomes have been inconsistent with experimental findings because the mechanism has not been entirely elucidated. Dexmedetomidine (DEX), an α adrenergic receptor agonist with anti-inflammatory and organ-protective activity, has been shown to attenuate IRI in the heart. The present study aimed to determine whether DEX is able to protect injured cardiomyocytes under hypoxia/reoxygenation (H/R) conditions and evaluate the conditions under which ERS is efficiently ameliorated. The cytotoxicity of DEX in H9c2 cells was evaluated 24 h after treatment with several different concentrations of DEX. The most appropriate H/R model parameters were determined by the assessment of cell viability and injury with Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays after incubation under hypoxic conditions for 3 h and reoxygenation conditions for 3, 6, 12 and 24 h. Additionally, the aforementioned methods were used to assess cardiomyocytes cultured with various concentrations of DEX under H/R conditions. Furthermore, the degree of apoptosis and the mRNA and protein expression levels of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12 were evaluated in all groups. The addition of 1, 5 and 10 µM DEX to the cell culture significantly increased the proliferation of H9c2 cells by >80% under normal culture conditions. In the H/R model assessment, following 3 h of anoxia exposure, H9c2 cell viability decreased to 62.67% with 3 h of reoxygenation and to 36% with 6 h of reoxygenation compared with the control. The viability of H9c2 cells subjected to hypoxia for 3 h and reoxygenation for 3 h increased by 61.3% when pretreated with 1 µM DEX, and the LDH concentration in the supernatant was effectively decreased by 13.7%. H/R significantly increased the percentage of apoptotic cells, as detected by flow cytometry, and increased the expression levels of GRP78, CHOP and caspase-12, while treatment with either DEX or 4-phenylbutyric acid (4-PBA) significantly attenuated these effects. Additionally, despite the protective effect of DEX against H/R injury, 4-PBA attenuated the changes induced by DEX and H/R. In conclusion, treatment with 1 µM DEX alleviated cell injury, apoptosis and the increases in GRP78, CHOP and caspase-12 expression levels in H9c2 cells induced by 3 h of hypoxia and 3 h of reoxygenation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751463 | PMC |
http://dx.doi.org/10.3892/etm.2020.9564 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!