Myocardial ischemia-reperfusion injury (MIRI) has been confirmed to induce endoplasmic reticulum stress (ERS) during downstream cascade reactions after the sufficient deterioration of cardiomyocyte function. However, clinically outcomes have been inconsistent with experimental findings because the mechanism has not been entirely elucidated. Dexmedetomidine (DEX), an α adrenergic receptor agonist with anti-inflammatory and organ-protective activity, has been shown to attenuate IRI in the heart. The present study aimed to determine whether DEX is able to protect injured cardiomyocytes under hypoxia/reoxygenation (H/R) conditions and evaluate the conditions under which ERS is efficiently ameliorated. The cytotoxicity of DEX in H9c2 cells was evaluated 24 h after treatment with several different concentrations of DEX. The most appropriate H/R model parameters were determined by the assessment of cell viability and injury with Cell Counting Kit-8 and lactate dehydrogenase (LDH) release assays after incubation under hypoxic conditions for 3 h and reoxygenation conditions for 3, 6, 12 and 24 h. Additionally, the aforementioned methods were used to assess cardiomyocytes cultured with various concentrations of DEX under H/R conditions. Furthermore, the degree of apoptosis and the mRNA and protein expression levels of glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP) and caspase-12 were evaluated in all groups. The addition of 1, 5 and 10 µM DEX to the cell culture significantly increased the proliferation of H9c2 cells by >80% under normal culture conditions. In the H/R model assessment, following 3 h of anoxia exposure, H9c2 cell viability decreased to 62.67% with 3 h of reoxygenation and to 36% with 6 h of reoxygenation compared with the control. The viability of H9c2 cells subjected to hypoxia for 3 h and reoxygenation for 3 h increased by 61.3% when pretreated with 1 µM DEX, and the LDH concentration in the supernatant was effectively decreased by 13.7%. H/R significantly increased the percentage of apoptotic cells, as detected by flow cytometry, and increased the expression levels of GRP78, CHOP and caspase-12, while treatment with either DEX or 4-phenylbutyric acid (4-PBA) significantly attenuated these effects. Additionally, despite the protective effect of DEX against H/R injury, 4-PBA attenuated the changes induced by DEX and H/R. In conclusion, treatment with 1 µM DEX alleviated cell injury, apoptosis and the increases in GRP78, CHOP and caspase-12 expression levels in H9c2 cells induced by 3 h of hypoxia and 3 h of reoxygenation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751463 | PMC |
http://dx.doi.org/10.3892/etm.2020.9564 | DOI Listing |
In Vitro Cell Dev Biol Anim
January 2025
Department of Critical Care Medicine, The Qujing NO.1 People's Hospital, Qujing, 655000, Yunnan, China.
Melatonin (MEL), functioning as a circulating hormone, is important for the regulation of ferroptosis in different health scenarios and acts as a crucial antioxidant in cardiovascular diseases. However, its specific function in ferroptosis related to myocardial ischemia-reperfusion injury (MIRI) remains to be fully elucidated. In our research, we utilized a rat model of MIRI induced by coronary artery ligation, along with a cell model subjected to hypoxia/reoxygenation (H/R).
View Article and Find Full Text PDFSleep Breath
January 2025
Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, and Research Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China.
Background: Our previous study have demonstrated chronic intermittent hypoxia (CIH) induced cardiomyocyte apoptosis and cardiac dysfunction. However, the molecular mechanisms are complicated and varied. In this study, we first investigated the CaMKIIγ expression and signaling pathway in the pathogenesis of cardiomyocyte apoptosis after CIH.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physiology, Zunyi Medical University, Campus No.1 Road, Xinpu New District, Zunyi, 563006, Guizhou, China.
In the vascular system, angiotensin II (Ang II) mediated vasoconstriction by inducing the production of 20-hydroxyeicosatetraenoic acid (20-HETE). However, the role of 20-HETE in Ang II-induced cardiac dysfunction had yet to be fully elucidated. This study investigated the effects of Ang II on CYP4A expression and 20-HETE production in H9c2 cells using RT-qPCR, Western blot, and ELISA.
View Article and Find Full Text PDFOpen Life Sci
December 2024
Department of Cardiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, 563000, Guizhou, People's Republic of China.
We investigated the protective effect of the NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC) on cardiomyocyte injury induced by HCN1 channel overexpression, and explored the underlying mechanisms. An HCN1 overexpression vector was constructed and transfected into H9C2 cells, followed by PDTC treatment. The experiments comprised the following groups: control, control + PDTC, overexpression negative control, HCN1 overexpression (HCN1-OE), and combined HCN1-OE + PDTC groups.
View Article and Find Full Text PDFCell Biochem Biophys
January 2025
Department of Pharmacy, The Fourth Affiliated Hospital of Soochow University, Jiangsu, Suzhou, 215000, China.
Total glucosides of paeony (TGP) have been investigated for their effects on cardiomyocyte hypertrophy induced by angiotensin II (Ang II). In this study, rat cardiomyocyte H9c2 cells were treated with various doses of TGP (0, 12.5, 25, 50, 100, 200, and 400 μmol/L), and cell viability was assessed using the MTT method to determine an optimal dose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!