Objectives: Our goal was to optimize infection control of paired environmental control interventions within hospitals to reduce methicillin-resistant (MRSA), carbapenem-resistant (CRE), and vancomycin-resistant (VRE).

Background: The most widely used infection control interventions are deployment of handwashing (HW) stations, control of relative humidity (RH), and negative pressure (NP) treatment rooms. Direct costs of multidrug-resistant organism (MDRO) infections are typically not included in the design of such interventions.

Methods: We examined the effectiveness of pairing HW with RH and HW with NP. We used the following three data sets: A meta-analysis of progression rates from uncolonized to colonized to infected, 6 years of MDRO treatment costs from 400 hospitals, and 8 years of MDRO incidence rates at nine army hospitals. We used these data as inputs into an Infection De-Escalation Model with varying budgets to obtain optimal intervention designs. We then computed the infection and prevention rates and cost savings resulting from these designs.

Results: The average direct cost of an MDRO infection was $3,289, $1,535, and $1,067 for MRSA, CRE, and VRE. The mean annual incidence rates per facility were 0.39%, 0.034%, and 0.011% for MRSA, CRE, and VRE. After applying the cost-minimizing intervention pair to each scenario, the percentage reductions in infections (and annual direct cost savings) in large, community, and small acute care hospitals were 69% ($1.5 million), 73% ($631K), 60% ($118K) for MRSA, 52% ($460.5K), 58% ($203K), 50% ($37K) for CRE, and 0%, 0%, and 50% ($12.8K) for VRE.

Conclusion: The application of this Infection De-Escalation Model can guide cost-effective decision making in hospital built environment design to improve control of MDRO infections.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1937586720976585DOI Listing

Publication Analysis

Top Keywords

built environment
8
acute care
8
infection control
8
control interventions
8
mdro infections
8
years mdro
8
incidence rates
8
infection de-escalation
8
de-escalation model
8
cost savings
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!