A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Recognizing Context-Aware Human Sociability Patterns Using Pervasive Monitoring for Supporting Mental Health Professionals. | LitMetric

AI Article Synopsis

  • Traditional mental health assessments often rely on subjective self-report questionnaires during in-person meetings, which can be affected by cognitive biases.
  • A new solution aims to detect social behavior patterns and changes using data from everyday devices, rather than focusing solely on diagnosing mental states.
  • The approach employs algorithms and fuzzy logic to identify and differentiate between normal and abnormal social behaviors, showing a strong correlation with individuals' social routines in evaluation tests.

Article Abstract

Traditionally, mental health specialists monitor their patients' social behavior by applying subjective self-report questionnaires in face-to-face meetings. Usually, the application of the self-report questionnaire is limited by cognitive biases (e.g., memory bias and social desirability). As an alternative, we present a solution to detect context-aware sociability patterns and behavioral changes based on social situations inferred from ubiquitous device data. This solution does not focus on the diagnosis of mental states, but works on identifying situations of interest to specialized professionals. The proposed solution consists of an algorithm based on frequent pattern mining and complex event processing to detect periods of the day in which the individual usually socializes. Social routine recognition is performed under different context conditions to differentiate abnormal social behaviors from the variation of usual social habits. The proposed solution also can detect abnormal behavior and routine changes. This solution uses fuzzy logic to model the knowledge of the mental health specialist necessary to identify the occurrence of behavioral change. Evaluation results show that the prediction performance of the identified context-aware sociability patterns has strong positive relation (Pearson's correlation coefficient >70%) with individuals' social routine. Finally, the evaluation conducted recognized that the proposed solution leading to the identification of abnormal social behaviors and social routine changes consistently.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795828PMC
http://dx.doi.org/10.3390/s21010086DOI Listing

Publication Analysis

Top Keywords

sociability patterns
12
mental health
12
proposed solution
12
social routine
12
social
9
solution detect
8
context-aware sociability
8
abnormal social
8
social behaviors
8
routine changes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!