Oligonucleotide conjugates with boron clusters have found applications in different fields of molecular biology, biotechnology, and biomedicine as potential agents for boron neutron capture therapy, siRNA components, and antisense agents. Particularly, the -dodecaborate anion represents a high-boron-containing residue with remarkable chemical stability and low toxicity, and is suitable for the engineering of different constructs for biomedicine and molecular biology. In the present work, we synthesized novel oligonucleotide conjugates of -dodecaborate attached to the 5'-, 3'-, or both terminal positions of DNA, RNA, 2'-O-Me RNA, and 2'-F-Py RNA oligomers. For their synthesis, we employed click reaction with the azido derivative of -dodecaborate. The key physicochemical characteristics of the conjugates have been investigated using high-performance liquid chromatography, gel electrophoresis, UV thermal melting, and circular dichroism spectroscopy. Incorporation of -dodecaborate residues at the 3'-end of all oligomers stabilized their complementary complexes, whereas analogous 5'-modification decreased duplex stability. Two boron clusters attached to the opposite ends of the oligomer only slightly influence the stability of complementary complexes of RNA oligonucleotide and its 2'-O-methyl and 2'-fluoro analogs. On the contrary, the same modification of DNA oligonucleotides significantly destabilized the DNA/DNA duplex but gave a strong stabilization of the duplex with an RNA target. According to circular dichroism spectroscopy results, two terminal -dodecaborate residues cause a prominent structural rearrangement of complementary complexes with a substantial shift from the B-form to the A-form of the double helix. The revealed changes of key characteristics of oligonucleotides caused by incorporation of terminal boron clusters, such as the increase of hydrophobicity, change of duplex stability, and prominent structural changes for DNA conjugates, should be taken into account for the development of antisense oligonucleotides, siRNAs, or aptamers bearing boron clusters. These features may also be used for engineering of developing NA constructs with pre-defined properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7795522 | PMC |
http://dx.doi.org/10.3390/ijms22010182 | DOI Listing |
Adv Sci (Weinh)
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, 299 Bayi Road, Wuhan, 430072, P. R. China.
Exosome-based drug delivery holds significant promise for cancer chemotherapy. However, current methods for loading drugs into exosomes are inefficient and cost-prohibitive for practical application. In this study, boron clusters are mixed with doxorubicin (DOX) and exosomes, enabling the efficient encapsulation of DOX into exosomes through a superchaotropic effect.
View Article and Find Full Text PDFJ Org Chem
December 2024
Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India.
Herein, we have established the formation of diaryl amide by aminocarbonylation of nitrobenzene with boronic acids. The method works in the catalytic presence of economical and commercially available CuI salt, which was significantly promoted by the FeSe(CO) cluster. Mo(CO) serves as a source of CO, and it also acts as a reductant with a combination of iron cluster.
View Article and Find Full Text PDFSmall
December 2024
School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
Confinement of metal species in porous supports is an effective strategy to optimize hydrogenation performance ascribing to tunable nanopore environments. However, only focusing on the electronic structure modulation for metal species has limited the design of improved catalysts. Herein, spatial confinement strategy is reported for constructing ultrasmall metal clusters in nitro-bonded COF (M@TpPa-NO, M = Pd, Pt, Ru, Rh, Ir).
View Article and Find Full Text PDFSci Total Environ
December 2024
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environmental and Resources, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Boron (B) deficiency affects over 132 crop species globally, making effective B supplement crucial for enhancing agricultural yield and health. This study explores an innovative application of nanoscale boron nitride (nano-BN) as a sustainable solution for addressing B deficiency in crops. Cucumber seedlings were treated with different contents of nano-BN under greenhouse conditions and both B and N ionic treatments were set as comparisons.
View Article and Find Full Text PDFACS Appl Polym Mater
December 2024
Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands.
In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!